[1] AGRAWAL G P. Nonlinear fiber optics,third edition & application of nonlinear fiber optics[M]. JIA Dong-fang, YU Zhen-hong, transl. Beijing: Publishing House of Electronics Industry, 2003: 34.
[2] LI Jun, HUANG De-xiu, ZHANG Xin-liang. Numerical analysis of fiber propagation model[J]. Optoelectronic Technology & Information, 2003, 16(2): 9-12.
[3] BEYLKIN G. On the representation of operators in bases of compactly supported wavelet[J]. SIAM Journal Numerical Analysis, 1992, 6(6): 1716-1740.
[4] CHANG Sheng, LIANG Chang-hong. Computation of the moments of scaling function and the standard form of differential operator of the second order[J]. Journal of Xidian University, 1996, 23(1): 1-7.
[5] ZHOU Tao. A numerical solution of differential equation based on wavelet[J]. Mathematical Theory and Applications, 2007, 27(1): 62-64.
[7] BEYLKIN G, COIFMAN R, ROKHLIN V. Fast wavelet transforms and numerical algorithms I[J]. Communications on Pure and Applied Mathematics, 1991, 44(2): 141-183.
[8] PIERCE I, REES P, SHORE K A. Wavelet operators for nonlinear optical pulse propagation[J]. JOSA A, 2000, 17(12): 2431-2438.
[9] CHEN Hong-ping, WANG Jian, HE Guo-guang. Slip-step wavelet method for numerical simulation of optical pulse propagation[J]. Acta Physica Sinica, 2005, 54(6): 2779-2783.
[10] HORIHATA S, RYOYA S. Wavelet analysis of envelope soliton interaction[J]. Transactions of the Japan Society for Industrial and Applied Mathematics, 2004, 14(4): 289-298.