• Laser & Optoelectronics Progress
  • Vol. 56, Issue 14, 141503 (2019)
Rongrong Lu1、2、3、4, Haibo Sun1、4、5, Shuangfei Fu1、2、4、*, Feng Zhu1、2、4、**, and Yingming Hao1、2、4
Author Affiliations
  • 1 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 3 University of Chinese Academy of Sciences, Beijing 100049, China
  • 4 Key Laboratory of Opto-Electronic Information Process, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 5 Faculty of Robot Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
  • show less
    DOI: 10.3788/LOP56.141503 Cite this Article Set citation alerts
    Rongrong Lu, Haibo Sun, Shuangfei Fu, Feng Zhu, Yingming Hao. Point Cloud Registration Based Satellite Motion Parameter Identification Method[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141503 Copy Citation Text show less
    Illustration of satellite self-rotation and precession
    Fig. 1. Illustration of satellite self-rotation and precession
    Flow chart of satellite motion parameter identification algorithm
    Fig. 2. Flow chart of satellite motion parameter identification algorithm
    Diagram of circle fitting
    Fig. 3. Diagram of circle fitting
    Diagram of relationship among motion parameters
    Fig. 4. Diagram of relationship among motion parameters
    Function introduction of simulation software. (a) Size of satellite model and initial azimuth information of sensor model;(b)-(d) parameters of camera model, setting interface of motion parameters, and data acquisition interface in simulation software
    Fig. 5. Function introduction of simulation software. (a) Size of satellite model and initial azimuth information of sensor model;(b)-(d) parameters of camera model, setting interface of motion parameters, and data acquisition interface in simulation software
    Illustration of satellite data. (a) Color image; (b) depth image; (c) 3D point cloud
    Fig. 6. Illustration of satellite data. (a) Color image; (b) depth image; (c) 3D point cloud
    Registration error between two adjacent point clouds. (a) α; (b) β; (c) γ; (d) tx; (e) ty; (f) tz
    Fig. 7. Registration error between two adjacent point clouds. (a) α; (b) β; (c) γ; (d) tx; (e) ty; (f) tz
    Comparison between two adjacent point clouds before and after registration. (a) Before registration; (b) after registration
    Fig. 8. Comparison between two adjacent point clouds before and after registration. (a) Before registration; (b) after registration
    Results of circle fitting under different Gaussian noise. (a) σ=0.01 m; (b) σ=0.02 m; (c) σ=0.03 m; (d) σ=0.04 m; (e) σ=0.05 m; (f) σ=0.06 m; (g) σ=0.07 m; (h) σ=0.08 m; (i) σ=0.09 m
    Fig. 9. Results of circle fitting under different Gaussian noise. (a) σ=0.01 m; (b) σ=0.02 m; (c) σ=0.03 m; (d) σ=0.04 m; (e) σ=0.05 m; (f) σ=0.06 m; (g) σ=0.07 m; (h) σ=0.08 m; (i) σ=0.09 m
    Errors of center of circle, radius and normal angle of fitting circle under different level of noise.(a) Center of circle; (b) radius; (c) normal vector
    Fig. 10. Errors of center of circle, radius and normal angle of fitting circle under different level of noise.(a) Center of circle; (b) radius; (c) normal vector
    Estimated error of each group of three estimated parameters. (a) Angular velocity of precession; (b) angular velocity of spin; (c) angle of nutation
    Fig. 11. Estimated error of each group of three estimated parameters. (a) Angular velocity of precession; (b) angular velocity of spin; (c) angle of nutation
    Parameter identification error changes with point cloud noise intensity. (a) Angular velocity of precession; (b) angular velocity of spin; (c) angle of nutation
    Fig. 12. Parameter identification error changes with point cloud noise intensity. (a) Angular velocity of precession; (b) angular velocity of spin; (c) angle of nutation
    Illustration of satellite data. (a) Color image; (b) depth image; (c) 3D point cloud
    Fig. 13. Illustration of satellite data. (a) Color image; (b) depth image; (c) 3D point cloud
    Intermediate results of parameter identification. (a) Point cloud of satellite; (b) motion track of point on satellite; (c) distribution of estimated speed of self-rotation
    Fig. 14. Intermediate results of parameter identification. (a) Point cloud of satellite; (b) motion track of point on satellite; (c) distribution of estimated speed of self-rotation
    GroupGround truthEstimated value
    ωs /[(°)∙s-1]ωm /[(°)∙s-1]θ /(°)ωs /[(°)∙s-1]ωm /[(°)∙s-1]θ /(°)
    G1100302099.830.619.7
    G21203040119.630.040.0
    G390304093.430.139.8
    G470202071.519.120.3
    G550202051.119.118.4
    G61203020107.426.319.4
    G7100302098.431.126.1
    G860303066.230.830.6
    G980302079.729.421.4
    G1050103045.310.931.1
    G1160303060.129.529.8
    G12100203099.620.030.1
    G13100401095.840.810.4
    G1480303080.029.730.4
    G1550102050.110.119.2
    Table 1. Identification results under 15 different groups of motion parameters by our method
    Rongrong Lu, Haibo Sun, Shuangfei Fu, Feng Zhu, Yingming Hao. Point Cloud Registration Based Satellite Motion Parameter Identification Method[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141503
    Download Citation