• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 5, 566 (2020)
Yong YANG1、*, Xuewu CHENG1, Guotao YANG2, Xianghui XUE3, and Faquan LI1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.05.006 Cite this Article
    YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan. Research progress of lidar for upper atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566 Copy Citation Text show less
    References

    [1] Emmert J T. Thermospheric mass density: A review [J]. Advances in Space Research, 2015, 56(5): 773-824.

    [2] Roble R G, Dickinson R E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? [J]. Geophysical Research Letters, 1989, 16(12): 1441-1444.

    [8] Gardner C S, Voelz D G. Lidar measurements of gravity-wave saturation effects in the sodium layer [J]. Geophysical Research Letters, 1985, 12(11): 765-768.

    [9] Chen H L, White M A, Krueger D A, et al. Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver [J]. Optics Letters, 1996, 21(15): 1093-1095.

    [10] She C Y, Sherman J, Yuan T, et al. The first 80 hour continuous lidar campaign for simultaneous observation of mesopause region temperature and wind [J]. Geophysical Research Letters, 2003, 30(6): 1319.

    [11] Marlton G, Charlton P A, Harrison G, et al. Using a global network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses [J]. Atmospheric Chemistry and Physics Discussions, 2020: 1-20.

    [12] Cheng X W, Gong S S, Li F Q, et al. 24 h continuous observation of sodium layer over Wuhan by lidar [J]. Science in China Series G-Physics Mechanics & Astronomy, 2007, 50(3): 287-293.

    [13] Arnold K S, She C Y. Metal fluorescence lidar (light detection and ranging) and the middle atmosphere [J]. Contemporary Physics, 2003, 44(1): 35-49.

    [14] Yang Y L, Yang Y, Xia Y, et al. Solid-state 589 nm seed laser based on Raman fiber amplifier for sodium wind/temperature lidar in Tibet, China [J]. Optics Express, 2018, 26(13): 16226.

    [19] Li Y J, Lin X, Song S L, et al. A combined rotational Raman-Rayleigh lidar for atmospheric temperature measurements over 5~80 km with self-calibration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7055-7065.

    [20] Cooney J. Measurement of atmospheric temperature profiles by Raman backscatter [J]. Journal of Applied Meteorology, 1972, 11(1): 108-112.

    [21] Arshinov Y F, Bobrovnikov S M, Zuev V E, et al. Atmospheric temperature measurements using a pure rotational Raman lidar [J]. Applied Optics, 1983, 22(19): 2984-2990.

    [22] Girolamo P. Rotational Raman lidar measurements of atmospheric temperature in the UV [J]. Geophysical Research Letters, 2004, 31(1): L01106.

    [23] Gibson A J, Thomas L, Bhattachacharyya S K. Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere [J]. Nature, 1979, 281: 131-132.

    [24] Fricke K H, von Zahn U. Mesopause temperatures derived from probing the hyperfine-structure of the D2 resonance line of sodium by lidar [J]. Journal of Atmospheric and Terrestrial Physics, 1985, 47(5): 499-512.

    [25] Bills R E, Gardner C S, She C Y. Narrow-band lidar technique for sodium temperature and Doppler wind observations of the upper-atmosphere [J]. Optical Engineering, 1991, 30(1): 13-21.

    [26] Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind [J]. Applied Optics, 2012, 51(22): 5401.

    [27] Gelbwachs J A. Iron Boltzmann factor lidar-proposed new remote-sensing technique for meospheric temperature [J]. Applied Optics, 1994, 33(30): 7151-7156.

    [28] Papen G C, Treyer D. Comparison of an Fe Boltzmann temperature lidar with a Na narrow-band lidar [J]. Applied Optics, 1998, 37: 8477-8481.

    [29] Chu X Z, Pan W, Papen G C, et al. Fe Boltzmann temperature lidar: Design, error analysis, and initial results at the North and South Poles [J]. Applied Optics, 2002, 41(21): 4400-4410.

    [30] Yu C M, Yi F. Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements [J]. Journal of Atmospheric & Solar Terrestrial Physics, 2008, 70(10): 1281-1288.

    [31] Tepley C A. Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar [J]. Journal of Geophysical Research-Atmospheres, 1994, 99(D12): 25781-25790.

    [32] Li F Q, Yang Y, Cheng X W, et al. The techniques and progress of wind and temperature lidar in WIPM [J]. EPJ Web of Conferences, 2016, 119: 12002.

    [33] Korb C L, Gentry B M, Li S X F. Edge technique Doppler lidar wind measurements with high vertical resolution [J]. Applied Optics, 1997, 36(24): 5976-5983.

    [34] Liu Z S, Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter [J]. Applied Optics, 2002, 41(33): 7079.

    [35] Franke S J, Chu X Z, Liu A Z, et al. Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause region above Maui, Hawaii [J]. Journal of Geophysical Research-Atmospheres, 2005, 110(D9): D09S02.

    [36] Huang W T, Chu X Z, Wiig J, et al. Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar [J]. Optics Letters, 2009, 34(10): 1552.

    [37] Baumgarten G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km [J]. Atmospheric Measurement Techniques, 2010, 3: 1509-1518.

    [38] Xu L, Hu X, Cheng Y Q, et al. Simulation of echo-photon counts of a sodium Doppler lidar and retrievals of atmospheric parameters [J]. Chinese Journal of Geophysics-Chinese Edition, 2010, 53(7): 1520-1528.

    [39] Dou X K, Han Y L, Sun D S, et al. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere [J]. Optics Express, 2014, 22(S5): A1203.

    [40] Yuan T, Yue J, She C Y, et al. Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy [J]. Applied Optics, 2009, 48(20): 3988-3993.

    [41] Lv D R, Pan W L, Wang Y N. Atmospheric profiling synthetic observation system in Tibet [J]. Advances in Atmospheric Sciences, 2018, 35(3): 264-267.

    [43] Hoffner J, Fricke B C. Accurate lidar temperatures with narrowband filters [J]. Optics Letters, 2005, 30(8): 890-892.

    [44] Yang Y, Cheng X W, Li F Q, et al. A flat spectral Faraday filter for sodium lidar [J]. Optics Letters, 2011, 36(7): 1302-1304.

    [47] Du L F, Wang J H, Yang Y, et al. Continuous detection of diurnal sodium fluorescent lidar over Beijing in China [J]. Atmosphere, 2020, 11(1): 1-14.

    [48] Xia Y, Cheng X W, et al. Sodium lidar observation over full diurnal cycles in Beijing, China [J]. Applied Optics, 2020, 59(6): 1529-1536.

    [49] Fricke B C, Alpers M, Hoffner J. Daylight rejection with a new receiver for potassium resonance temperature lidars [J]. Optics Letters, 2002, 27(21): 1932-1934.

    [51] Cheng X W, Yang Y, Wang Z L, et al. Joint observation results of Na layer and ionosphere in Wuhan during the Total Solar Eclipse [J]. Science China Earth Sciences, 2016, 59(4): 418-424.

    [52] Liu X, Xu J Y. Daytime lidar measurements of the sodium layer in China [J]. Science China Earth Sciences, 2016, 59(8): 1707-1708.

    [53] Bowman M R, Gibson A J, Sandford M C W. Observation of mesospheric Na atoms by tuner laser radar [J]. Nature, 1969, 221: 456-457.

    [54] Rowlett J R, Gardner C S, Richter E S, et al. Lidar observations of wave-like structure in atmospheric sodium layer [J]. Geophysical Research Letters, 1978, 5(8): 683-686.

    [55] Clemesha B R. Sporadic neutral metal layers in the mesosphere and lower thermosphere [J]. Journal of Atmospheric and Terrestrial Physics, 1995, 57(7): 725-736.

    [56] Gong S S, Zeng X Z, Xue X J, et al. First time observation of sodium layer over Wuhan, China by sodium fluorescence lidar [J]. Science in China Series A, 1997, 40(11): 1228-1232.

    [57] Plane J M C, Bailey S M, Baumgarten G, et al. Layered phenomena in the mesopause region [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 127: 1-2.

    [58] Hoffner J, Friedman J S. The mesospheric metal layer topside: A possible connection to meteoroids [J]. Atmospheric Chemistry and Physics, 2004, 4(3): 801-808.

    [59] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy [J]. Nature, 1987, 328(6127): 229-231.

    [60] Pique J P, Moldovan I C, Fesquet V. Concept for polychromatic laser guide stars: One-photon excitation of the 4P3/2 level of a sodium atom [J]. Journal of the Optical Society of America A, 2006, 23(11): 2817-2828.

    [62] Higbie J M, Rochester S M, Patton B, et al. Magnetometry with mesospheric sodium [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3522-3525.

    [63] Pedreros B F, Bonaccini C D, Budker D, et al. Remote sensing of geomagnetic fields and atomic collisions in the mesosphere [J]. Nature Communications, 2018, 9(1): 3981.

    [64] Fan T W, Yang X Z, Dong J Y, et al. Remote magnetometry with mesospheric sodium based on gated photon counting [J]. Journal of Geophysical Research: Space Physics, 2019, 124(9): 7505-7512.

    [65] Plane J M C. The chemistry of meteoric metals in the Earth’s upper-atmosphere [J]. International Reviews in Physical Chemistry, 1991, 10(1): 55-106.

    [66] Gong S S, Yang G T, Wang J M, et al. A double sodium layer event observed over Wuhan, China by lidar [J]. Geophysical Research Letters, 2003, 30(5): 13.

    [67] Wang J H, Yang Y, Cheng X W, et al. Double sodium layers observation over Beijing, China [J]. Geophysical Research Letters, 2012, 39(15): L15801.

    [68] Xue X H, Dou X K, Lei J H, et al. Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies [J]. Journal of Geophysical Research: Space Physics, 2013, 118: 2409-2418.

    [69] Zhang T M, Wang J H, Fu J, et al. Observation of the double sodium layer over Haikou, China by lidar [J]. Chinese Journal of Space Science, 2013, 33(4): 41012.

    [70] Jiao J, Yang G T, Wang J H, et al. Sporadic potassium layers and their connection to sporadic E layers in the mesopause region at Beijing, China [J]. Solar-Terrestrial Physics, 2017, 3(2): 64-69.

    [71] Xun Y C, Yang G T, She C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central midlatitude lidar stations [J]. Geophysical Research Letters, 2019, 46(4): 1892-1899.

    [72] Xun Y C, Yang G T, She C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central midlatitude lidar stations [J]. Geophysical Research Letters, 2019, 46(4): 1892-1899.

    [73] Wang Y F, Wang W, Xie Y R, et al. Vibrational overtone excitation of D2 in a molecular beam with a high-energy, narrow-bandwidth, nanosecond optical parametric oscillator/amplifier [J]. Review of Scientific Instruments, 2020, 91(5): 053001.

    [74] Wu F J, Zheng H R, Cheng X W, et al. Simultaneous detection of the Ca and Ca+ layers by a dual-wavelength tunable lidar system [J]. Applied Optics, 2020, 59(13): 4122130.

    [75] Gerding M, Alpers M, Hoffner J, et al. Sporadic Ca and Ca+ layers at mid-latitudes: Simultaneous observations and implications for their formation [J]. Annales Geophysicae, 2001, 19(1): 47-58.

    [76] Wang Chi. New chains of space weather monitoring stations in China [J]. Space Weather, 2010, 8(8): S08001.

    [77] Dou X K, Xue X H, Chen T D, et al. A statistical study of sporadic sodium layer observed by sodium lidar at Hefei (31.8° N, 117.3° E) [J]. Annales Geophysicae, 2009, 27(6): 2247-2257.

    YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan. Research progress of lidar for upper atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566
    Download Citation