• Acta Optica Sinica
  • Vol. 38, Issue 7, 0727002 (2018)
Jiabao Wu, Shicheng Zhang, Yiqi Hu, Gongwei Lin, Yueping Niu*, and Shangqing Gong
Author Affiliations
  • School of Science, East China University of Science and Technology, Shanghai 200237, China
  • show less
    DOI: 10.3788/AOS201838.0727002 Cite this Article Set citation alerts
    Jiabao Wu, Shicheng Zhang, Yiqi Hu, Gongwei Lin, Yueping Niu, Shangqing Gong. Intracavity Electromagnetically Induced Transparency and Its Linewidth Under a Weak Control Field[J]. Acta Optica Sinica, 2018, 38(7): 0727002 Copy Citation Text show less
    References

    [1] Harris S E, Field J E. Imamo lu A. Nonlinear optical processes using electromagnetically induced transparency [J]. Physical Review Letters, 64, 1107-1110(1990).

    [2] Harris S E. Electromagnetically induced transparency[J]. Physics Today, 50, 36-42(1997).

    [3] Fleischhauer M. Imamo lu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media [J]. Reviews of Modern Physics, 77, 633-673(2005).

    [4] Wang Y B, Cong D L, Xu P et al. Observation of atomic coherence in intercombination transition line of strontium atom[J]. Acta Optica Sinica, 33, 0427001(2013).

    [5] Boller K-J. Imamo lu A, Harris S E. Observation of electromagnetically induced transparency [J]. Physical Review Letters, 66, 2593-2596(1991).

    [6] Hakuta K, Marmet L, Stoicheff B P. Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen[J]. Physical Review Letters, 66, 596-599(1991). http://www.ncbi.nlm.nih.gov/pubmed/10043850

    [7] Zhang G Z, Hakuta K, Stoicheff B P. Nonlinear optical generation using electromagnetically induced transparency in atomic hydrogen[J]. Physical Review Letters, 71, 3099-3102(1993). http://www.ncbi.nlm.nih.gov/pubmed/10054857

    [8] Liu Y T, Niu Y P, Lin G W et al. Enhancement of fifth-order nonlinearity induced by atomic coherence[J]. Acta Optica Sinica, 37, 0719002(2017).

    [9] Hau L V, Harris S E, Dutton Z et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 397, 594-598(1999). http://www.tandfonline.com/servlet/linkout?suffix=CIT0053&dbid=16&doi=10.1080%2F09500340.2018.1455917&key=10.1038%2F17561

    [10] Lukin M D. Imamo lu A. Nonlinear optics and quantum entanglement of ultra-slow single photons [J]. Physical Review Letters, 84, 1419-1422(2000).

    [11] Yang X H, Zhou Y Y, Xiao M. Entangler via electromagnetically induced transparency with an atomic ensemble[J]. Scientific Reports, 3, 3479(2013).

    [12] Phillips D F, Fleischhauer A, Mair A et al. Storage of light in atomic vapor[J]. Physical Review Letters, 86, 783-786(2001). http://www.ncbi.nlm.nih.gov/pubmed/11177939

    [13] Zhu S G, Zhang Y, Chen X Z et al. Storage of an optical packet in the EIT medium[J]. Acta Optica Sinica, 23, 769-770(2003). http://www.cqvip.com/Main/Detail.aspx?id=1000384716

    [14] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 111, 033601(2013).

    [15] Mücke M, Figueroa E, Bochmann J et al. Electromagnetically induced transparency with single atoms in a cavity[J]. Nature, 465, 755-758(2010). http://www.ncbi.nlm.nih.gov/pubmed/20463661

    [16] Tanji-Suzuki H, Chen W L, Landig R et al. Vacuum-induced transparency[J]. Science, 333, 1266-1269(2011).

    [17] Ritter S, Nölleke C, Hahn C et al. An elementary quantum network of single atoms in optical cavities[J]. Nature, 484, 195-200(2012). http://europepmc.org/abstract/MED/22498625

    [18] Kampschulte T, Alt W, Manz S et al. Electromagnetically-induced-transparency control of single-atom motion in an optical cavity[J]. Physical Review A, 89, 033404(2014). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.033404

    [19] Lukin M D, Fleischhauer M, Scully M O et al. Intracavity electromagnetically induced transparency[J]. Optics Letters, 23, 295-297(1998). http://www.ncbi.nlm.nih.gov/pubmed/18084490

    [20] Wang H, Goorskey D J, Burkett W H et al. Cavity-linewidth narrowing by means of electromagnetically induced transparency[J]. Optics Letters, 25, 1732-1734(2000). http://www.tandfonline.com/servlet/linkout?suffix=CIT0029&dbid=8&doi=10.1080%2F09500340.2017.1401135&key=18066329

    [21] Hernandez G, Zhang J P, Zhu Y F. Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system[J]. Physical Review A, 76, 053814(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000076000005053814000001&idtype=cvips&gifs=Yes

    [22] Wu H B, Xiao M. White-light cavity with competing linear and nonlinear dispersions[J]. Physical Review A, 77, 031801(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000077000003031801000001&idtype=cvips&gifs=Yes

    [23] Ying K, Niu Y P, Chen D J et al. White light cavity via modification of linear and nonlinear dispersion in an N-type atomic system[J]. Optics Communications, 342, 189-192(2015).

    [24] Zhang J P, Hernandez G, Zhu Y F. Slow light with cavity electromagnetically induced transparency[J]. Optics Letters, 33, 46-48(2008). http://www.ncbi.nlm.nih.gov/pubmed/18157253

    [25] Wei X G, Zhang J P, Zhu Y F. All-optical switching in a coupled cavity-atom system[J]. Physical Review A, 82, 033808(2010). http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2010-FWZ3

    [26] Zou B C, Tan Z, Musa M et al. Interaction-free all-optical switching at low light intensities in a multi-atom cavity-QED system[J]. Physical Review A, 89, 023806(2014).

    [27] Ji M Y, Duan Y F, Niu Y P et al. Cavity ringdown spectroscopy based on V-type electromagnetically induced transparency[J]. Acta Optica Sinica, 36, 1127001(2016).

    [28] Peng Y D, Jin L L, Niu Y P et al. Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances[J]. Journal of Modern Optics, 57, 641-645(2010). http://www.tandfonline.com/doi/full/10.1080/09500340.2010.486872

    [29] Ying K, Niu Y P, Chen D J et al. Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system[J]. Journal of the Optical Society of America B, 31, 144-148(2014).

    [30] Ying K, Niu Y P, Chen D J et al. Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature[J]. Journal of Modern Optics, 61, 322-327(2014).

    [31] Chen H N, Ying K, Duan Y F et al. Cavity linewidth narrowing by means of electromagnetically induced transparency in Rb with a longitudinal magnetic field[J]. Chinese Optics Letters, 12, 092701(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ140901000352t1w3z6

    [32] Tian S C, Wan R G, Shan X N et al. Controllable cavity linewidth narrowing via spontaneously generated coherence in a four level atomic system[J]. Optics Communications, 356, 155-160(2015).

    [33] Lin G W, Yang J, Niu Y P et al. Cavity linewidth narrowing with dark-state polaritons[J]. Chinese Physics B, 25, 014201(2016). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgwl201601068&dbname=CJFD&dbcode=CJFQ

    [34] Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 84, 5094-5097(2000). http://www.ncbi.nlm.nih.gov/pubmed/10990875?dopt=Abstract

    [35] Dong C H, Fiore V, Kuzyk M C et al. Optomechanical dark mode[J]. Science, 338, 1609-1613(2012).

    Jiabao Wu, Shicheng Zhang, Yiqi Hu, Gongwei Lin, Yueping Niu, Shangqing Gong. Intracavity Electromagnetically Induced Transparency and Its Linewidth Under a Weak Control Field[J]. Acta Optica Sinica, 2018, 38(7): 0727002
    Download Citation