• Laser & Optoelectronics Progress
  • Vol. 57, Issue 18, 182802 (2020)
Jinguang Sun1, Yanbei Li1、2、*, Xian Wei2, and Wanli Wang1、2
Author Affiliations
  • 1College of Electronic and Information Engineering, Liaoning University of Engineering and Technology, Huludao, Liaoning 125100 China
  • 2Quanzhou Institute of Equipment Manufacturing Haixi Institutes, Chinese Academy of Sciences, Quanzhou, Fujian 362000, China
  • show less
    DOI: 10.3788/LOP57.182802 Cite this Article Set citation alerts
    Jinguang Sun, Yanbei Li, Xian Wei, Wanli Wang. Hyperspectral Image Classification Combined with Convolutional Neural Network and Sparse Coding[J]. Laser & Optoelectronics Progress, 2020, 57(18): 182802 Copy Citation Text show less
    Structure diagram of residual module
    Fig. 1. Structure diagram of residual module
    Structure of hyperspectral image classification combined with convolutional neural network and sparse coding
    Fig. 2. Structure of hyperspectral image classification combined with convolutional neural network and sparse coding
    Indian Pines dataset and label drawing
    Fig. 3. Indian Pines dataset and label drawing
    Salinas dataset and label diagram
    Fig. 4. Salinas dataset and label diagram
    Pavia University dataset and label diagram
    Fig. 5. Pavia University dataset and label diagram
    Classification of each algorithm in Indian Pines dataset. (a) Lable; (b) RBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    Fig. 6. Classification of each algorithm in Indian Pines dataset. (a) Lable; (b) RBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    Classification of each algorithm in Salinas dataset. (a) Lable; (b) RBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    Fig. 7. Classification of each algorithm in Salinas dataset. (a) Lable; (b) RBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    Classification of each algorithm in Pavia University dataset. (a) Lable; (b) FBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    Fig. 8. Classification of each algorithm in Pavia University dataset. (a) Lable; (b) FBF-SVM; (c) Se-2D-CNN; (d) 3D-CNN; (e) SSC; (f) SOMP; (g) our algorithm
    LabelClassSample quantity
    TrainingTest
    1Alfalfa937
    2Corn-no2851143
    3Corn-min166664
    4Corn47190
    5Grass/pasture97386
    6Grass/trees146584
    7G/pasture-mo622
    8Hay-win96382
    9Oats416
    10Soy-no194778
    11Soy-min4911964
    12Soy-cle118475
    13Wheat41164
    14Woods2531012
    15BGTD77309
    16SST1974
    Total-20498200
    Table 1. Quantity of training and test samples in Indian Pines dataset
    LabelClassSample quantity
    TrainingTest
    1Brocoli-gw-14021607
    2Brocoli-gw-27452981
    3Fallow3951581
    4Fallow-rp2791115
    5Fallow-sm5362142
    6Stubble7923167
    7Celery7162863
    8Grapes-un22549017
    9Soil-vd12404963
    10CSGW6562622
    11Lettuce-ro-4wk214854
    12Lettuce-ro-5wk3851542
    13Lettuce-ro-6wk183733
    14Lettuce-ro-7wk214856
    15Vinyard-un14535815
    16Vinyard-vt3611446
    Total-1082543304
    Table 2. Quantity of training and test samples in Salinas dataset
    LabelClassSample quantity
    TrainingTest
    1Asphalt13265305
    2Meadows373014919
    3Gravel4201679
    4Trees6132451
    5Painted-ms2691076
    6Bare Soil10064023
    7Bitumen2691064
    8Self-b Bricks7362946
    9Shadows189758
    Total-855534221
    Table 3. Quantity of training and test sample in Pavia University dataset
    LabelClassification accuracy /%
    RBF-SVMSe-2D-CNN3D-CNNSSCSOMPOurs
    149.5857.7270.3155.4286.8899.94
    278.3688.7482.0274.9093.7895.38
    364.6081.8989.8860.9191.8497.65
    460.0577.4297.2348.3393.4899.82
    594.0395.6894.5691.5992.4898.33
    696.0998.4399.3095.5499.2399.59
    761.3077.5693.6524.3551.7498.67
    898.7395.0199.9999.2799.9598.56
    942.2257.5454.557.783.3399.99
    1060.1485.0296.2364.0287.2299.83
    1187.3988.4198.9782.2797.3599.78
    1273.0671.3393.3674.2687.6398.56
    1399.3297.9198.3299.2698.2698.93
    1496.9197.3799.6795.6498.5499.33
    1554.3091.4597.8258.9897.4699.79
    1690.8290.3097.3591.6596.0097.72
    OA /%81.6888.9397.2479.6194.6498.94
    AA /%75.4384.4991.3270.2685.9598.89
    Kappa0.7860.8730.9570.7640.9380.981
    Table 4. Classification accuracy of each algorithm in Indian Pines dataset
    LabelClassification accuracy /%
    RBF-SVMSe-2D-CNN3D-CNNSSCSOMPOurs
    198.5499.9998.8499.6899.9899.99
    299.0699.9997.0799.4998.7899.99
    393.7699.3099.9793.1293.8799.92
    499.2299.8299.0499.4198.5599.74
    597.9399.8499.7298.5691.7499.95
    699.7699.9999.7499.7599.9799.99
    799.5399.9199.9699.7399.9899.99
    888.5091.0094.2677.8697.4099.97
    999.5199.9999.9699.8199.9499.99
    1093.9298.3298.8194.7196.0199.82
    1195.3597.6599.5896.2399.4798.73
    1289.9699.0699.5699.6091.8199.74
    1398.2899.3199.1399.3587.2099.99
    1494.4998.6698.6694.9794.2299.78
    1562.5876.1399.3663.5767.2599.96
    1698.2498.7399.1598.5499.6299.92
    OA /%91.3495.9598.8789.4993.4898.99
    AA /%94.5997.1798.9394.6594.7499.78
    Kappa0.9030.9550.9870.8820.9260.988
    Table 5. Classification accuracy of each algorithm in Salinas dataset
    LabelClassification accuracy /%
    RBF-SVMSe-2D-CNN3D-CNNSSCSOMPOurs
    181.7698.1398.5284.6280.3998.15
    284.9183.4998.9184.0092.7599.78
    376.6198.3698.8475.5594.9199.54
    496.0877.8597.9894.8595.2699.57
    599.5799.9399.9899.6299.9499.80
    683.1691.9398.4684.8685.2999.97
    789.6598.3099.4578.2499.2797.26
    881.7992.1495.7668.3987.3498.21
    997.9989.2196.4897.9885.1498.93
    OA /%85.2098.8298.9483.8789.2199.01
    AA /%87.9592.2796.6185.4591.1199.05
    Kappa0.8100.9840.9860.7930.8580.988
    Table 6. Classification accuracy of each algorithm in Pavia University dataset
    Jinguang Sun, Yanbei Li, Xian Wei, Wanli Wang. Hyperspectral Image Classification Combined with Convolutional Neural Network and Sparse Coding[J]. Laser & Optoelectronics Progress, 2020, 57(18): 182802
    Download Citation