• Laser & Optoelectronics Progress
  • Vol. 60, Issue 5, 0500002 (2023)
Huajun Chen*
Author Affiliations
  • School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, Anhui, China
  • show less
    DOI: 10.3788/LOP212849 Cite this Article Set citation alerts
    Huajun Chen. Research Progress on Majorana Fermions[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0500002 Copy Citation Text show less
    References

    [1] Majorana E. Teoria simmetrica dell’elettrone e del positrone[J]. Il Nuovo Cimento, 14, 171-184(1937).

    [2] Fu L, Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator[J]. Physical Review Letters, 100, 096407(2008).

    [3] Tanaka Y, Yokoyama T, Nagaosa N. Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators[J]. Physical Review Letters, 103, 107002(2009).

    [4] Klinovaja J, Stano P, Yazdani A et al. Topological superconductivity and Majorana fermions in RKKY systems[J]. Physical Review Letters, 111, 186805(2013).

    [5] Lutchyn R M, Sau J D, Sarma S D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures[J]. Physical Review Letters, 105, 077001(2010).

    [6] Oreg Y, Refael G, von Oppen F. Helical liquids and Majorana bound states in quantum wires[J]. Physical Review Letters, 105, 177002(2010).

    [7] Mourik V, Zuo K, Frolov S M et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[J]. Science, 336, 1003-1007(2012).

    [8] Deng M T, Yu C L, Huang G Y et al. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device[J]. Nano Letters, 12, 6414-6419(2012).

    [9] Rokhinson L P, Liu X Y, Furdyna J K. The fractional A.C. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles[J]. Nature Physics, 8, 795-799(2012).

    [10] Wilczek F. Majorana returns[J]. Nature Physics, 5, 614-618(2009).

    [11] Alicea J. New directions in the pursuit of Majorana fermions in solid state systems[J]. Reports on Progress in Physics, 75, 076501(2012).

    [12] Beenakker C W J. Search for Majorana fermions in superconductors[J]. Annual Review of Condensed Matter Physics, 4, 113-136(2013).

    [13] Alicea J. Exotic matter: Majorana modes materialize[J]. Nature Nanotechnology, 8, 623-624(2013).

    [14] Elliott S R, Franz M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics[J]. Reviews of Modern Physics, 87, 137-163(2015).

    [15] Lee E J H, Jiang X C, Houzet M et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures[J]. Nature Nanotechnology, 9, 79-84(2014).

    [16] Finck A D K, Van Harlingen D J, Mohseni P K et al. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device[J]. Physical Review Letters, 110, 126406(2013).

    [17] Pikulin D I, Dahlhaus J P, Wimmer M et al. Zero-voltage conductance peak from weak antilocalization in a Majorana nanowire[J]. New Journal of Physics, 14, 125011(2012).

    [18] Potter A C, Lee P A. Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films[J]. Physical Review Letters, 105, 227003(2010).

    [19] Frolov S M, Manfra M J, Sau J D. Topological superconductivity in hybrid devices[J]. Nature Physics, 16, 718-724(2020).

    [20] Bagrets D, Altland A. Class D spectral peak in Majorana quantum wires[J]. Physical Review Letters, 109, 227005(2012).

    [21] Nadj-Perge S, Drozdov I K, Li J et al. Topological matter. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor[J]. Science, 346, 602-607(2014).

    [22] Jeon S, Xie Y L, Li J et al. Distinguishing a Majorana zero mode using spin-resolved measurements[J]. Science, 358, 772-776(2017).

    [23] Yin J X, Wu Z, Wang J H et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te, Se)[J]. Nature Physics, 11, 543-546(2015).

    [24] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 83, 1057(2011).

    [25] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 82, 3045-3067(2010).

    [26] Ando Y. Topological insulator materials[J]. Journal of the Physical Society of Japan, 82, 102001(2013).

    [27] Yu R, Zhang W, Zhang H J et al. Quantized anomalous Hall effect in magnetic topological insulators[J]. Science, 329, 61-64(2010).

    [28] Chang C Z, Zhang J S, Feng X et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 340, 167-170(2013).

    [29] Schnyder A P, Ryu S, Furusaki A et al. Classification of topological insulators and superconductors in three spatial dimensions[J]. Physical Review B, 78, 195125(2008).

    [30] Linder J, Tanaka Y, Yokoyama T et al. Unconventional superconductivity on a topological insulator[J]. Physical Review Letters, 104, 067001(2010).

    [31] Wang M X, Liu C H, Xu J P et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films[J]. Science, 336, 52-55(2012).

    [32] Xu J P, Liu C H, Wang M X et al. Artificial topological superconductor by the proximity effect[J]. Physical Review Letters, 112, 217001(2014).

    [33] Xu J P, Wang M X, Liu Z L et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure[J]. Physical Review Letters, 114, 017001(2015).

    [34] Sun H H, Zhang K W, Hu L H et al. Majorana zero mode detected with spin selective andreev reflection in the vortex of a topological superconductor[J]. Physical Review Letters, 116, 257003(2016).

    [35] He Q L, Pan L, Stern A L et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure[J]. Science, 357, 294-299(2017).

    [36] Zhang P, Yaji K, Hashimoto T et al. Observation of topological superconductivity on the surface of an iron-based superconductor[J]. Science, 360, 182-186(2018).

    [37] Hsu C H, Stano P, Klinovaja J et al. Majorana Kramers pairs in higher-order topological insulators[J]. Physical Review Letters, 121, 196801(2018).

    [38] Chen J, Yu P, Stenger J et al. Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices[J]. Science Advances, 3, e1701476(2017).

    [39] Albrecht S M, Higginbotham A P, Madsen M et al. Exponential protection of zero modes in Majorana islands[J]. Nature, 531, 206-209(2016).

    [40] Liu D E, Baranger H U. Detecting a Majorana-fermion zero mode using a quantum dot[J]. Physical Review B, 84, 201308(2011).

    [41] Flensberg K. Non-Abelian operations on Majorana fermions via single-charge control[J]. Physical Review Letters, 106, 090503(2011).

    [42] Leijnse M, Flensberg K. Scheme to measure Majorana fermion lifetimes using a quantum dot[J]. Physical Review B, 84, 140501(2011).

    [43] Deng M T, Vaitiekėnas S, Hansen E B et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system[J]. Science, 354, 1557-1562(2016).

    [44] Xu X D, Sun B, Berman P R et al. Coherent optical spectroscopy of a strongly driven quantum dot[J]. Science, 317, 929-932(2007).

    [45] Weis S, Rivière R, Deléglise S et al. Optomechanically induced transparency[J]. Science, 330, 1520-1523(2010).

    [46] Teufel J D, Li D L, Allman M S et al. Circuit cavity electromechanics in the strong-coupling regime[J]. Nature, 471, 204-208(2011).

    [47] Safavi-Naein A H, Mayer Alegre T P, Chan J et al. Electromagnetically induced transparency and slow light with optomechanics[J]. Nature, 472, 69-73(2011).

    [48] Urbaszek B, Marie X, Amand T et al. Nuclear spin physics in quantum dots: an optical investigation[J]. Reviews of Modern Physics, 85, 79-133(2013).

    [49] Artuso R D, Bryant G W. Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability[J]. Nano Letters, 8, 2106-2111(2008).

    [50] Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 82, 2257-2298(2010).

    [51] Hatef A, Sadeghi S M, Singh M R. Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems[J]. Nanotechnology, 23, 065701(2012).

    [52] Lu Z E, Zhu K D. Slow light in an artificial hybrid nanocrystal complex[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 42, 015502(2009).

    [53] Chen H J. Fano resonance induced fast to slow light in a hybrid semiconductor quantum dot and metal nanoparticle system[J]. Laser Physics Letters, 17, 025201(2020).

    [54] Ridolfo A, Di Stefano O, Fina N et al. Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics[J]. Physical Review Letters, 105, 263601(2010).

    [55] Peng P, Liu Y C, Xu D et al. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances[J]. Physical Review Letters, 119, 233901(2017).

    [56] Wilson-Rae I, Zoller P, Imamoğlu A. Laser cooling of a nanomechanical resonator mode to its quantum ground state[J]. Physical Review Letters, 92, 075507(2004).

    [57] Li J J. Light propagation and application in generalized nano-optomechanical systems[D](2012).

    [58] Chen H J. Quantum optical properties of micro(nano)-scale optomechanical systems and their applications in optical detections[D](2015).

    [59] Yeo I, de Assis P L, Gloppe A et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system[J]. Nature Nanotechnology, 9, 106-110(2014).

    [60] Chen H J, Zhu K D. Nonlinear optomechanical detection for Majorana fermions via a hybrid nanomechanical system[J]. Nanoscale Research Letters, 9, 166(2014).

    [61] Chen H J, Zhu K D. Possibility of Majorana signature detecting via a single-electron spin implanted in a suspended carbon nanotube resonator[J]. RSC Advances, 4, 47587-47592(2014).

    [62] Chen H J, Fang X W, Chen C Z et al. Robust signatures detection of Majorana fermions in superconducting iron chains[J]. Scientific Reports, 6, 36600(2016).

    [63] Chen H J, Zhu K D. Surface plasm on enhanced sensitive detection for possible signature of Majorana fermions via a hybrid semiconductor quantum dot-metal nanoparticle system[J]. Scientific Reports, 5, 13518(2015).

    [64] Chen H J, Wu H W. Rabi splitting and optical Kerr nonlinearity of quantum dot mediated by Majorana fermions[J]. Scientific Reports, 8, 17677(2018).

    [65] Chen H J. Majorana fermions induced Fano resonance and fast-to-slow light in a hybrid semiconductor/superconductor ring device[J]. Quantum Information Processing, 19, 171(2020).

    [66] Wen L J, Pan D, Zhao J H. From high-quality semiconductor/superconductor nanowires to Majorana zero mode[J]. Acta Physica Sinica, 70, 058101(2021).

    [67] Kong L Y, Ding H. Emergent vortex Majorana zero mode in iron-based superconductors[J]. Acta Physica Sinica, 69, 110301(2020).

    [68] He Q L. Topological superconductivity and Majorana fermion[J]. Chinese Science Bulletin, 63, 2717-2730(2018).

    [69] Li Y Y, Jia J F. Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor[J]. Acta Physica Sinica, 68, 137401(2019).

    [70] Liang Q F, Wang Z, Kawakami T et al. Exploration of Majorana bound states in topological superconductors[J]. Acta Physica Sinica, 69, 117102(2020).

    [71] Liu C, Guo X W, Li S R et al. Theory and application of edge states in topological photonic crystals[J]. Laser & Optoelectronics Progress, 59, 0100001(2022).

    [72] Li X B, Wang H L, Ma L N et al. Wavelength conversion characteristics of quantum-dot semiconductor optical amplifier based on photonic crystal[J]. Acta Optica Sinica, 42, 0206001(2022).

    [73] Chen C F, Zheng Y, Fang C L. Improvement of luminescence efficiency and stability of CsPbBr3 quantum dot films with microlens array structure[J]. Chinese Journal of Lasers, 48, 1313001(2021).

    [74] Zhu G Y, Wang R R, Zhang G M. Majorana fermions and topological quantum computation[J]. Physics, 46, 154-167(2017).

    [75] Fu J B, Li B, Zhang X F et al. Experimental review on Majorana zero-modes in hybrid nanowires[J]. Science China Physics, Mechanics & Astronomy, 64, 107001(2021).

    [76] Chen H J. Nanoresonator enhancement of Majorana-fermion-induced slow light in superconducting iron chains[J]. Micromachines, 12, 1435(2021).

    [77] Chen H J, Zhu P J, Chen Y L et al. Majorana fermions induced fast-and slow-light in a hybrid semiconducting nanowire/superconductor device[J]. Chinese Physics B, 31, 027802(2022).