• Spectroscopy and Spectral Analysis
  • Vol. 41, Issue 1, 25 (2021)
Wei ZHANG1、1, Fa-qin DONG1、1, Xiao-chun HE1、1, Huai-qing SONG1、1, Yi-lin QIN1、1, Xin XIONG1、1, and Zi-han TANG1、1
Author Affiliations
  • 1[in Chinese]
  • 11. Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2021)01-0025-07 Cite this Article
    Wei ZHANG, Fa-qin DONG, Xiao-chun HE, Huai-qing SONG, Yi-lin QIN, Xin XIONG, Zi-han TANG. Release of Phosphorus to Promote Biomineralization of Uranium by Saccharomyces Cerevisiae Based on Spectroscopy Analysis[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 25 Copy Citation Text show less
    (a) Effect of initial pH on biosorption of uranium by S. cerevisiae, (b) The relative species distribution of 100 mg·L-1 U(Ⅵ) at different pH calculated by Visual MINTEQ 3.1 (c0=100 mg·L-1, T=25 ℃, M=5 g·L-1, t=60 min)
    Fig. 1. (a) Effect of initial pH on biosorption of uranium by S. cerevisiae, (b) The relative species distribution of 100 mg·L-1 U(Ⅵ) at different pH calculated by Visual MINTEQ 3.1 (c0=100 mg·L-1, T=25 ℃, M=5 g·L-1, t=60 min)
    The changes of phosphorus content after biosorption under different pH
    Fig. 2. The changes of phosphorus content after biosorption under different pH
    (a) Effect of reaction time on biosorption of uranium by S. cerevisiae and the pseudo-second-order kinetic model, (b) Webber intraparticle diffusion model (c0=100 mg·L-1, pH=3.0, T=25 ℃, M=5 g·L-1)
    Fig. 3. (a) Effect of reaction time on biosorption of uranium by S. cerevisiae and the pseudo-second-order kinetic model, (b) Webber intraparticle diffusion model (c0=100 mg·L-1, pH=3.0, T=25 ℃, M=5 g·L-1)
    Effect of temperature on the biosorption of U(Ⅵ) by S. cerevisiae
    Fig. 4. Effect of temperature on the biosorption of U(Ⅵ) by S. cerevisiae
    (a) FTIR of S. cerevisiae before and after reaction with uranium, (b) FTIR-peak-differentiating analysis in 900~1 800 cm-1 range
    Fig. 5. (a) FTIR of S. cerevisiae before and after reaction with uranium, (b) FTIR-peak-differentiating analysis in 900~1 800 cm-1 range
    SEM-EDS of S. cerevisiae before and after reaction with uranium(a): Control; (b): After reaction
    Fig. 6. SEM-EDS of S. cerevisiae before and after reaction with uranium
    (a): Control; (b): After reaction
    X-ray photoelectron binding energy curves of S. cerevisiae before and after biosorption(a): Full spectrum; (b): U(4f) spectra; (c): P(2p) spectra; (d): The ratio of Sp/Sc under different uranium adsorption capacity
    Fig. 7. X-ray photoelectron binding energy curves of S. cerevisiae before and after biosorption
    (a): Full spectrum; (b): U(4f) spectra; (c): P(2p) spectra; (d): The ratio of Sp/Sc under different uranium adsorption capacity
    XRD patterns of S. cerevisiae before and after biosorption of uranium
    Fig. 8. XRD patterns of S. cerevisiae before and after biosorption of uranium
    吸附反应前溶液pH值吸附反应后溶液pH值
    1.000.95
    2.002.16
    3.004.56
    4.005.86
    5.006.80
    6.007.04
    7.007.14
    Table 1. Changes of pH value in the solution before and after biosorption of uranium on S. cerevisiae
    T/KΔG0/
    (kJ·mol-1)
    ΔS0/
    (J·mol-1·K-1)
    ΔH0/
    (kJ·mol-1)
    288-10.3
    298-12.8239.558.6
    308-15.2
    Table 2. Thermodynamic parameters for the biosorption of uranium by S. cerevisiae
    Wei ZHANG, Fa-qin DONG, Xiao-chun HE, Huai-qing SONG, Yi-lin QIN, Xin XIONG, Zi-han TANG. Release of Phosphorus to Promote Biomineralization of Uranium by Saccharomyces Cerevisiae Based on Spectroscopy Analysis[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 25
    Download Citation