• Photonic Sensors
  • Vol. 14, Issue 1, 240126 (2024)
Yuan ZHUANG1, Jun ZOU2, Jiqiang ZHANG1, Lu ZHANG1, Jiahe ZHANG1, Leixin MENG1, and and Qing YANG1、3、*
Author Affiliations
  • 1Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
  • 2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310014, China
  • 3State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
  • show less
    DOI: 10.1007/s13320-023-0694-9 Cite this Article
    Yuan ZHUANG, Jun ZOU, Jiqiang ZHANG, Lu ZHANG, Jiahe ZHANG, Leixin MENG, and Qing YANG. On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator[J]. Photonic Sensors, 2024, 14(1): 240126 Copy Citation Text show less
    References

    [1] Z. C. Fan, X. Z. Diao, K. J. Hu, Y. Zhang, Z. Y. Huang, Y. B. Kang, et al., “Structural health monitoring of metal-to-glass-ceramics penetration during thermal cycling aging using femto-laser inscribed FBG sensors,” Scientific Reports, 2020, 10(1): 12330.

    [2] L. Albero Blanquer, F. Marchini, J. R. Seitz, N. Daher, F. Bétermier, J. Huang, et al., “Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes,” Nature Communications, 2022, 13(1): 1153.

    [3] J. Huang, S. T. Boles, and J. M. Tarascon, “Sensing as the key to battery lifetime and sustainability,” Nature Sustainability, 2022, 5(3): 194–204.

    [4] D. Keller, D. R. Eagan, G. J. Fochesatto, R. Peterson, H. M. Chan, and A. Parker, “Advantages of fiber Bragg gratings for measuring electric motor loadings in aerospace application,” Review of Scientific Instruments, 2019, 90(7): 075005.

    [5] C. Massaroni, M. Zaltieri, D. Lo Presti, A. Nicolo, D. Tosi, and E. Schena, “Fiber Bragg grating sensors for cardiorespiratory monitoring: a review,” IEEE Sensors Journal, 2021, 21(13): 14069–14080.

    [6] D. Lo Presti, C. Massaroni, C. S. J. Leitao, M. D. Domingues, M. Sypabekova, D. Barrera, et al., “Fiber Bragg gratings for medical applications and future challenges: A review,” IEEE Access, 2020, 8: 156863–156888.

    [7] L. Massari, G. Fransvea, J. D’Abbraccio, M. Filosa, G. Terruso, A. Aliperta, et al., “Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin,” Nature Machine Intelligence, 2022, 4(5): 425–435.

    [8] C. Li, Y. Wang, and F. Li, “Highly stable FBG wavelength demodulation system based on F-P etalon with temperature control module,” Infrared and Laser Engineering, 2017, 46(1): 122002–0122002.

    [9] Y. C. Ma, C. J. Wang, Y. H. Yang, S. B. Yan, and J. M. Li, “High resolution and wide scale fiber Bragg grating sensor interrogation system,” Optics & Laser Technology, 2013, 50: 107–111.

    [10] A. Roy, A. L. Chakraborty, and C. K. Jha, “Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer,” Applied Optics, 2017, 56(12): 3562–3569.

    [11] S. K. Ibrahim, R. Mccue, J. A. O’Dowd, M. Farnan, and D. M. Karabacak, “Demonstration of strain independent temperature measurements using optical PM-FBG sensors for ground testing of satellite panels,” in International Conference on Space Optics, Chania, 2018, pp. 2625–2639.

    [12] H. Kim and M. Song, “Linear FBG interrogation with a wavelength-swept fiber laser and a volume phase grating spectrometer,” International Society for Optics and Photonics, 2011, 7753: 1175–1178.

    [13] Z. Cai, J. Hao, D. Bo, J. Phua, and T. M. Chiam, “Design of a fiber Bragg grating sensor interrogation system using volume phase grating and CCD detection,” Proceedings of SPIE: OFS International Conference on Optical Fiber Sensors, 2012, 8421: 620–623.

    [14] J. Meyer, A. Nedjalkov, E. Pichler, C. Kelb, and W. Schade, “Development of a polymeric arrayed waveguide grating interrogator for fast and precise lithium-ion battery status monitoring,” Batteries-Basel, 2019, 5(4): 66.

    [15] T. T. Lai, P. Cheng, C. L. Yan, C. Li, W. B. Hu, and M. H. Yang, “2D and 3D shape sensing based on 7-core fiber Bragg gratings,” Photonic Sensors, 2020, 10(1): 306–315.

    [16] S. Sefati, C. Gao, I. Iordachita, R. H. Taylor, and M. Armand, “Data-driven shape sensing of a surgical continuum manipulator using an uncalibrated fiber Bragg grating sensor,” IEEE Sensors Journal, 2021, 21(3): 3066–3076.

    [17] Y. Liu, A. Zhou, and L. B. Yuan, “Multifunctional fiber-optic sensor, based on helix structure and fiber Bragg gratings, for shape sensing,” Optics & Laser Technology, 2021, 143: 107327.

    [18] X. Z. Xiao, B. J. Xu, X. Z. Xu, B. Du, Z. Y. Chen, C. L. Fu, et al., “Femtosecond laser auto-positioning direct writing of a multicore fiber Bragg grating array for shape sensing,” Optics Letters, 2022, 47(4): 758–761.

    [19] Y. E. Marin, T. Nannipieri, C. J. Oton, and F. Di Pasquale, “Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform,” Journal of Lightwave Technology, 2017, 35(16): 3374–3379.

    [20] Y. E. Marin, A. Celik, S. Faralli, L. Adelmini, C. Kopp, F. Di Pasquale, et al., “Integrated dynamic wavelength division multiplexed FBG sensor interrogator on a silicon photonic chip,” Journal of Lightwave Technology, 2019, 37(18): 4770–4775.

    [21] Y. Marin, T. Nannipieri, C. J. Oton, and F. D. Pasquale, “Fiber Bragg grating sensor interrogators on chip: challenges and opportunities,” in Optical Fiber Sensors Conference, Jeju, 2017, pp. 1–4.

    [22] B. Ouyang, M. Haverdings, R. Horsten, M. Kruidhof, P. Kat, and J. Caro, “Integrated photonics interferometric interrogator for a ring-resonator ultrasound sensor,” Optics Express, 2019, 27(16): 23408–23421.

    [23] A. Shen, C. Qiu, L. Z. Yang, T. G. Dai, Y. B. Li, H. Yu, et al., “Tunable microring based on-chip interrogator for wavelength-modulated optical sensors,” Optics Communications, 2015, 340: 116–120.

    [24] F. Yang, W. J. Zhang, S. X. Zhao, Q. W. Liu, J. F. Ta, and Z. Y. He, “Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array,” Optics Express, 2019, 27(5): 6037–6046.

    [25] F. Yang, W. J. Zhang, Q. W. Liu, and Z. Y. He, “Silicon-microring-based interrogator for TDM-FBG sensors enabled by pulse compression,” Optics Letters, 2020, 45(23): 6402–6405.

    [26] F. Yang, W. Zhang, S. Zhao, Q. Liu, and Z. He, “Real-time interrogation of multiplexed FBG strain sensors based on a thermally tunable microring resonator array,” in Optical Fiber Communication Conference, San Diego, 2019, pp. 1–3.

    [27] H. M. Moon, S. C. Kwak, K. Im, J. B. Kim, and S. Kim, “Wavelength interrogation system for quasi-distributed fiber Bragg grating temperature sensors based on a 50-GHz array waveguide grating,” IEEE Sensors Journal, 2019, 19(7): 2598–2604.

    [28] A. Trita, E. Voet, J. Vermeiren, D. Delbeke, P. Dumon, S. Pathak, et al., “Simultaneous interrogation of multiple fiber Bragg grating sensors using an arrayed waveguide grating filter fabricated in SOI platform,” IEEE Photonics Journal, 2015, 7(6): 1–11.

    [29] A. Edgar, M. Yan, E. Cornelia, K. Zongjian, and SUN, “Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator,” Photonic Sensors, 2011, 1(3): 281–288.

    [30] A. Kazmierczak, A. Jusza, M. Slowikowski, S. Stopiński, and R. Piramidowicz, “Integrated interrogator circuits for fiber optic sensor network in generic InP photonic integrated circuit technology,” Optical Sensing and Detection, 2018, 10680: 120–129.

    [31] L. Caleta, R. S. Evenblij, and J. A. P. Leijtens, “Space gator: a giant leap for fiber optic sensing,” in International Conference on Space Optics, Tenerife, 2018, pp. 373–380.

    [32] S. M. Weng, P. Yuan, W. Zhuang, D. L. Zhang, F. Luo, and L. Q. Zhu, “SOI-based multi-channel AWG with fiber Bragg grating sensing interrogation system,” Photonics-Basel, 2021, 8(6): 214.

    [33] H. Q. Li, X. D. Ma, B. B. Cui, Y. X. Wang, C. Zhang, J. F. Zhao, et al., “Chip-scale demonstration of hybrid III-V/silicon photonic integration for an FBG interrogator,” Optica, 2017, 4(7): 692–700.

    [34] D. Pustakhod, E. Kleijn, K. Williams, and X. Leijtens, “High-resolution AWG-based fiber Bragg grating interrogator,” Photonics Technology Letters, 2016, 28(20): 2203–2206.

    [35] P. Yuan, S. M. Weng, S. K. Ji, D. L. Zhang, and L. Q. Zhu, “Performance analysis of fiber Bragg grating sensor interrogators based on arrayed waveguide gratings,” Optical Engineering, 2021, 60(6): 066101.

    [36] S. K. Ibrahim, M. Farnan, D. M. Karabacak, and J. M. Singer, “Enabling technologies for fiber optic sensing,” Optical Sensing & Detection IV, 2016, 9899: 229–243.

    [37] M. K. Smit and C. V. Dam, “PHASAR-based WDM-devices: Principles, design and applications,” Selected Topics in Quantum Electronics, 1996, 2(2): 236–250.

    [38] J. Zou, F. Y. Sun, C. H. Wang, M. Zhang, J. N. Wang, T. T. Lang, et al., “Silicon-based arrayed waveguide gratings for WDM and spectroscopic analysis applications,” Optics & Laser Technology, 2022, 147: 107656.

    Yuan ZHUANG, Jun ZOU, Jiqiang ZHANG, Lu ZHANG, Jiahe ZHANG, Leixin MENG, and Qing YANG. On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator[J]. Photonic Sensors, 2024, 14(1): 240126
    Download Citation