• Infrared and Laser Engineering
  • Vol. 48, Issue 1, 103001 (2019)
Sun Jinghua1、2、3、*, Sun Kexiong2, Lin Zhifang2, Sun Jifen2, Jin Lu2, and Xu Yongzhao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
  • show less
    DOI: 10.3788/irla201948.0103001 Cite this Article
    Sun Jinghua, Sun Kexiong, Lin Zhifang, Sun Jifen, Jin Lu, Xu Yongzhao. High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103001 Copy Citation Text show less
    References

    [1] Ell R, Morgner U, Kartner F X, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser[J]. Opt Lett, 2011, 26: 373.

    [2] Eckstein J N, Ferguson A I, Hansch T W. High-resolution two-photon spectroscopy with picosecond light pulses[J]. Phys Rev Lett, 1978, 40: 847.

    [3] Ranka J K, Winder R S, Stentz A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett, 2000, 25: 25-27.

    [4] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288: 635.

    [5] Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D. H, Keller U. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation[J]. Appl Phys B, 1999, 69: 327.

    [6] Diddams S A. The evolving optical frequency comb[J]. JOSA B, 2010, 27: B51-B62.

    [7] Ye J, Cundiff S T. Femtosecond optical Frequency Comb Technology: Principle, Operation and Application[M]Berlin: Springer, 2005.

    [8] Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys Rev Let, 2000, 5102: 84.

    [9] Udem Th, Holzwarth R, Hansch T W. Optical frequency metrology[J]. Nature, 2002, 233: 416.

    [10] Holzwarth R, Udem Th, Hansch T W, et al. Optical frequency synthesizer for precision spectroscopy[J]. Phys Rev Let, 2000, 85: 2264-2275.

    [11] Ma L S, Bi Z, Bartels A, L, et al. Optical frequency synthesis and comparison with uncertainty at the 10-19 level[J]. Science, 2004, 303: 1843-1848.

    [12] Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock[J]. Nature, 2005, 435: 321-324.

    [13] Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th Decimal Place[J]. Science, 2008, 319: 1808-1812.

    [14] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506: 71.

    [15] Blatt S, Ludlow A D, Campbell G K, et al. New limits on coupling of fundamental constants to gravity using 87 Sr optical lattice clock[J]. Phys Rev Lett, 2008, 100: 140801.

    [16] Kolkowitz S, Pikovski I, Langellier N, et al. Gravitational wave detection with optical lattice atomic clocks[J]. Phys Rev D, 2016, 94: 124043.

    [17] Julien Mandon, Guy Guelachvili, Nathalie Picqué. Fourier transform spectroscopy with a laser frequency comb[J]. Nature Photon, 2009, 3: 99.

    [18] Joohyung Lee, Young Jin Kim, Keunwoo Lee, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photon, 2010, 4: 716.

    [19] Yoshiaki Nakajima, Kaoru Minoshima. Highly stabilized optical frequency comb interferometer with a long fiber-based reference path towards arbitrary distance measurement[J]. Opt Express, 2015, 23: 25979.

    [20] van den Berg S A, Persijn S T, Kok G J P, et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement[J]. Phys Rev Lett, 2012, 108: 183901.

    [21] Zhao Xin, Hu Guoqing, Zhao Bofeng, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Opt Express, 2016, 24: 21833.

    [22] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photon, 2009, 3: 351-356.

    [23] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 2018, 359: 887.

    [24] Kato T, Uchida M, Minoshima K. Non-scanning three-dimensional imaging using spectral interferometry with chirped frequency comb[C]//Conference on Lasers and Electro-Optics, 2016: SW1H.4.

    [25] Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Opt Express, 2011, 19: 18501.

    [26] Danzmann K, the LISA study team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Class Quantum Grav, 1996, 13: A247-A250.

    [27] Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305: 503-505.

    [28] Kurita T, Yoshida H, Kawashima T, et al. Generation of sub-7-cycle optical pulses from a mode-locked ytterbium-doped single-mode fiber oscillator pumped by polarization-combined 915nm laser diodes[J]. Opt Lett, 2012, 37: 3972-3974.

    [29] Luo D, Liu Y, Gu C, et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Appl Phys Lett, 2018, 112: 061106.

    [30] Zhou Shian, Lyuba Kuznetsova, Chong Andy, et al. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers[J]. Opt Express, 2005, 13: 4869-4877.

    [31] Lyuba Kuznetsova, Frank W Wise. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Opt Lett, 2007, 32: 2671-2673.

    [32] Hung-Wen Chen, JinKang Lim, Shu-Wei Huang et al. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression[J]. Opt Express, 2012, 20: 28672-28682.

    [33] Schibli T R, Hartl I, Yost D C, et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power[J]. Nature Photon, 2008, 2: 355-359.

    Sun Jinghua, Sun Kexiong, Lin Zhifang, Sun Jifen, Jin Lu, Xu Yongzhao. High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103001
    Download Citation