• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 2, 262 (2022)
Ke CHENG1、2、*, Xiaonan HU1、2, Yu HE1、2, Weijia MENG1、2, Haitao LUAN1、2, Min GU1、2, and Xinyuan FANG1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.02.006 Cite this Article
    CHENG Ke, HU Xiaonan, HE Yu, MENG Weijia, LUAN Haitao, GU Min, FANG Xinyuan. Detecting orbital angular momentum of perfect optical vortex beams based on diffraction neural networks[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 262 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [2] Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V. Generation of the“perfect”optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536.

    [3] Chen M, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Optics Letters, 2013, 38(22): 4919-4922.

    [4] Jabir M V, Chaitanya N A, Aadhi A, et al. Generation of perfect vortex of variable size and its effect in angular spectrum of the down-converted photons[J]. Scientific Reports, 2016, 6: 21877.

    [5] Zhang C, Min C, Yuan X C. Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device[J]. Optics Communications, 2016, 381: 292-295.

    [6] Banerji A, Singh R P, Banerjee D, et al. Generating a perfect quantum optical vortex[J]. Physical Review A, 2016, 94(5): 053838.

    [7] Arrizon V, Ruiz U, Sanchez-de-la-Llave D, et al. Optimum generation of annular vortices using phase diffractive optical elements[J]. Optics Letters, 2015, 40(7): 1173-1176.

    [8] Garcia-Garcia J, Rickenstorff-Parrao C, Ramos-Garcia R, et al. Simple technique for generating the perfect optical vortex[J]. Optics Letters, 2014, 39(18): 5305-5308.

    [9] Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 2015, 40(4): 597-600.

    [10] Xu R, Chen P, Tang J, et al. Perfect higher-order Poincaré sphere beams from digitalized geometric phases[J]. Physical Review Applied, 2018, 10(3): 034061.

    [11] Chen P, Wei B Y, Hu W, et al. Liquid-crystal-mediated geometric phase: From transmissive to broadband reflective planar optics[J]. Advanced Materials, 2020, 32(27): 21.

    [12] Paez-Lopez R, Ruiz U, Arrizon V, et al. Optical manipulation using optimal annular vortices[J]. Optics Letters, 2016, 41(17): 4138-4141.

    [13] Zhang C L, Min C J, Du L P, et al. Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging[J]. Applied Physics Letters, 2016, 108(20): 201601.

    [14] Khodadadi Karahroudi M, Moosavi S A, Mobashery A, et al. Performance evaluation of perfect optical vortices transmission in an underwater optical communication system[J]. Applied Optics, 2018, 57(30): 9148-9154.

    [15] Reddy S G, Chithrabhanu P, Vaity P, et al. Non-diffracting speckles of a perfect vortex beam[J]. Journal of Optics, 2016, 18(5): 055602.

    [16] Ma H, Li X, Tai Y, et al. In situ measurement of the topological charge of a perfect vortex using the phase shift method[J]. Optics Letters, 2017, 42(1): 135-138.

    [17] Ding L, Meng Z, Feng S, et al. Measuring the topological charge of optical vortices using elliptical Airy phase mask[J]. IEEE Photonics Technology Letters, 2020, 32(12): 741-744.

    [18] Chu C, Gao S C, Liu Z B, et al. Hybrid angular gradient phase grating for measuring the orbital angular momentum of perfect optical vortex beams[J]. IEEE Photonics Journal, 2020, 12(3): 1-9.

    [19] Vaity P, Banerji J, Singh R P. Measuring the topological charge of an optical vortex by using a tilted convex lens[J]. Physics Letters A, 2013, 377(15): 1154-1156.

    [20] Han Y J, Zhao G H. Measuring the topological charge of optical vortices with an axicon[J]. Optics Letters, 2011, 36(11): 2017-2019.

    [21] Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna[J]. New Journal of Physics, 2014, 16: 113028.

    [22] Doster T, Watnik A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks[J]. Applied Optics, 2017, 56(12): 3386-3396.

    [23] Li J, Zhang M, Wang D. Adaptive demodulator using machine learning for orbital angular momentum shift keying[J]. IEEE Photonics Technology Letters, 2017, 29(17): 1455-1458.

    [24] Lin X, Rivenson Y, Yardimci N T, et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 2018, 361(6406): 1004-1008.

    [25] Li X Z, Tai Y P, Lv F J, et al. Measuring the fractional topological charge of LG beams by using interference intensity analysis[J]. Optics Communications, 2015, 334: 235-239.

    [26] Lv F J, Li X Z, Tai Y P, et al. High-order topological charges measurement of LG vortex beams with a modified Mach-Zehnder interferometer[J]. Optik, 2015, 126(23): 4378-4381.

    [27] Zhao Q S, Hao S Q, Wang Y, et al. Orbital angular momentum detection based on diffractive deep neural network[J]. Optics Communications, 2019, 443: 245-249.

    [28] Luan H T, Lin D J, Li K Y, et al. 768-ary Laguerre-Gaussian-mode shift keying free-space optical communication based on convolutional neural networks[J]. Optics Express, 2021, 29(13): 19807-19818.

    [29] Xiong W J, Wang P P, Cheng M L, et al. Convolutional neural network based atmospheric turbulence compensation for optical orbital angular momentum multiplexing[J]. Journal of Lightwave Technology, 2020, 38(7): 1712-1721.

    [30] Ren H R, Fang X Y, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11): 948-955.

    CHENG Ke, HU Xiaonan, HE Yu, MENG Weijia, LUAN Haitao, GU Min, FANG Xinyuan. Detecting orbital angular momentum of perfect optical vortex beams based on diffraction neural networks[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 262
    Download Citation