• Chinese Optics Letters
  • Vol. 19, Issue 1, 013601 (2021)
Jian Zhang1、*, Rui Tu1、2, Chao Huang1、2, Xiaoli Yao1、2, Xin Hu1, Haixiong Ge3, and Xuefeng Zhang1、**
Author Affiliations
  • 1Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
  • 2College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
  • 3Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.3788/COL202119.013601 Cite this Article Set citation alerts
    Jian Zhang, Rui Tu, Chao Huang, Xiaoli Yao, Xin Hu, Haixiong Ge, Xuefeng Zhang. Chiral plasmonic nanostructure of twistedly stacked nanogaps[J]. Chinese Optics Letters, 2021, 19(1): 013601 Copy Citation Text show less
    References

    [1] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824(2003).

    [2] J. Zhao, X. Zhang, C. R. Yonzon, J. H. Amanda, P. V. D. Richard. Localized surface plasmon resonance biosensors. Nanomedicine, 1, 219(2006).

    [3] K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, X. Zhang. Raman enhancement factor of a single tunable nanoplasmonic resonator. J. Phys. Chem. B, 110, 3964(2006).

    [4] X. Huang, C. Lou, H. Zhang, H. Yang. Effects of different structural parameters and the medium environment on plasmonic lattice resonance formed by Ag nanospheres on SiO2 nanopillar arrays. Chin. Opt. Lett., 18, 033601(2020).

    [5] Y. Zhao, M.A. Belkin, A. Alù. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun., 3, 870(2012).

    [6] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896(2017).

    [7] Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. J. Jin, P. Gao, X. Li, X. Ma, X. Luo. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon., 3, 2022(2016).

    [8] F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv. Funct. Mater., 27, 1704295(2017).

    [9] H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye, L. Qian. Multichannel high extinction ratio polarized beam splitters based on metasurfaces. Chin. Opt. Lett., 17, 052303(2019).

    [10] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett., 5, 1569(2005).

    [11] T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, Z. Zhang. Chiral near-fields around chiral dolmen nanostructure. J. Phys. D: Appl. Phys., 50, 474004(2017).

    [12] A. V. Novitsky, V. M. Galynsky, S. V. Zhukovsky. Asymmetric transmission in planar chiral split-ring metamaterials: microscopic Lorentz-theory approach. Phys. Rev. B, 86, 075138(2012).

    [13] C. Kelly, L. K. Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah, M. Kadodwala. Controlling metamaterial transparency with superchiral fields. ACS Photon., 5, 535(2018).

    [14] S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, S. Gwo. Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. Nano Lett., 10, 632(2010).

    [15] J. Xiao, R. Xiao, R. Zhang, Z. Shen, W. Hu, L. Wang, Y. Lu. Tunable terahertz absorber based on transparent and flexible metamaterial. Chin. Opt. Lett., 18, 092403(2020).

    [16] M. Hentschel, M. Schäferling, X. Duan, H. Giessen, N. Liu. Controlling metamaterial transparency with superchiral fields. Sci. Adv., 3, e1602735(2017).

    [17] X. Cui, F. Qin, Q. Ruan, X. Zhuo, J. Wang. Circular gold nanodisks with synthetically tunable diameters and thicknesses. Adv. Funct. Mater., 28, 1705516(2018).

    [18] N. J. Halas, S. Lal, W. S. Chang, S. Link, P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913(2011).

    [19] M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen. Three-dimensional chiral plasmonic oligomers. Nano Lett., 12, 2542(2012).

    [20] X. Yao, Z. Shi, C. Li, Z. Kong, G. Zhang, J. Zhang, X. Zhang. Tunable optical absorption of dimer nanostructure array achieved by angular evaporation. J. Micromech. Microeng., 28, 115010(2018).

    [21] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370(1972).

    [22] Z. Li, W. Liu, H. Cheng, S. Chen, J. Tian. Spin-selective transmission and devisable chirality in two-layer metasurfaces. Sci. Rep., 7, 8204(2017).

    [23] Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, S. H. Chang. Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano, 6, 3390(2012).

    [24] K. Y. Bliokh, F. Nori. Characterizing optical chirality. Phys. Rev. A, 83, 021803(2011).

    [25] M. Schäferling, X. Yin, N. Engheta, H. Giessen. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photon., 1, 530(2014).

    [26] A. García-Etxarri, J. A. Dionne. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B, 87, 235409(2013).

    [27] L. Hu, X. Tian, Y. Huang, L. Fang, Y. Fang. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles. Nanoscale, 8, 3720(2016).

    [28] S. Yoo, Q. H. Park. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics, 8, 249(2019).

    CLP Journals

    [1] Wentao Zhang, Weijie Shi, Hui Guo, Changchun Yan. Mid-infrared flat-topped broadband chiral helix metamaterials based on indium tin oxide and their chiral properties[J]. Chinese Optics Letters, 2021, 19(11): 111601

    Data from CrossRef

    [1] Yu Qu, Lei Lei, Yu Yu, Xinliang Zhang, Zhengfang Qian. Coexistence of circular dichroism and asymmetric transmission in Babinet-complementary metamaterials. Optics Express, 30, 30394(2022).

    Jian Zhang, Rui Tu, Chao Huang, Xiaoli Yao, Xin Hu, Haixiong Ge, Xuefeng Zhang. Chiral plasmonic nanostructure of twistedly stacked nanogaps[J]. Chinese Optics Letters, 2021, 19(1): 013601
    Download Citation