• Chinese Optics Letters
  • Vol. 19, Issue 1, 013601 (2021)
Jian Zhang1,*, Rui Tu1,2, Chao Huang1,2, Xiaoli Yao1,2..., Xin Hu1, Haixiong Ge3 and Xuefeng Zhang1,**|Show fewer author(s)
Author Affiliations
  • 1Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
  • 2College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
  • 3Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.3788/COL202119.013601 Cite this Article Set citation alerts
    Jian Zhang, Rui Tu, Chao Huang, Xiaoli Yao, Xin Hu, Haixiong Ge, Xuefeng Zhang, "Chiral plasmonic nanostructure of twistedly stacked nanogaps," Chin. Opt. Lett. 19, 013601 (2021) Copy Citation Text show less
    References

    [1] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824(2003).

    [2] J. Zhao, X. Zhang, C. R. Yonzon, J. H. Amanda, P. V. D. Richard. Localized surface plasmon resonance biosensors. Nanomedicine, 1, 219(2006).

    [3] K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, X. Zhang. Raman enhancement factor of a single tunable nanoplasmonic resonator. J. Phys. Chem. B, 110, 3964(2006).

    [4] X. Huang, C. Lou, H. Zhang, H. Yang. Effects of different structural parameters and the medium environment on plasmonic lattice resonance formed by Ag nanospheres on SiO2 nanopillar arrays. Chin. Opt. Lett., 18, 033601(2020).

    [5] Y. Zhao, M.A. Belkin, A. Alù. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun., 3, 870(2012).

    [6] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896(2017).

    [7] Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. J. Jin, P. Gao, X. Li, X. Ma, X. Luo. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon., 3, 2022(2016).

    [8] F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, X. Luo. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv. Funct. Mater., 27, 1704295(2017).

    [9] H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye, L. Qian. Multichannel high extinction ratio polarized beam splitters based on metasurfaces. Chin. Opt. Lett., 17, 052303(2019).

    [10] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett., 5, 1569(2005).

    [11] T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu, Z. Zhang. Chiral near-fields around chiral dolmen nanostructure. J. Phys. D: Appl. Phys., 50, 474004(2017).

    [12] A. V. Novitsky, V. M. Galynsky, S. V. Zhukovsky. Asymmetric transmission in planar chiral split-ring metamaterials: microscopic Lorentz-theory approach. Phys. Rev. B, 86, 075138(2012).

    [13] C. Kelly, L. K. Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah, M. Kadodwala. Controlling metamaterial transparency with superchiral fields. ACS Photon., 5, 535(2018).

    [14] S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, S. Gwo. Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. Nano Lett., 10, 632(2010).

    [15] J. Xiao, R. Xiao, R. Zhang, Z. Shen, W. Hu, L. Wang, Y. Lu. Tunable terahertz absorber based on transparent and flexible metamaterial. Chin. Opt. Lett., 18, 092403(2020).

    [16] M. Hentschel, M. Schäferling, X. Duan, H. Giessen, N. Liu. Controlling metamaterial transparency with superchiral fields. Sci. Adv., 3, e1602735(2017).

    [17] X. Cui, F. Qin, Q. Ruan, X. Zhuo, J. Wang. Circular gold nanodisks with synthetically tunable diameters and thicknesses. Adv. Funct. Mater., 28, 1705516(2018).

    [18] N. J. Halas, S. Lal, W. S. Chang, S. Link, P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913(2011).

    [19] M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen. Three-dimensional chiral plasmonic oligomers. Nano Lett., 12, 2542(2012).

    [20] X. Yao, Z. Shi, C. Li, Z. Kong, G. Zhang, J. Zhang, X. Zhang. Tunable optical absorption of dimer nanostructure array achieved by angular evaporation. J. Micromech. Microeng., 28, 115010(2018).

    [21] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370(1972).

    [22] Z. Li, W. Liu, H. Cheng, S. Chen, J. Tian. Spin-selective transmission and devisable chirality in two-layer metasurfaces. Sci. Rep., 7, 8204(2017).

    [23] Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, S. H. Chang. Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano, 6, 3390(2012).

    [24] K. Y. Bliokh, F. Nori. Characterizing optical chirality. Phys. Rev. A, 83, 021803(2011).

    [25] M. Schäferling, X. Yin, N. Engheta, H. Giessen. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photon., 1, 530(2014).

    [26] A. García-Etxarri, J. A. Dionne. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B, 87, 235409(2013).

    [27] L. Hu, X. Tian, Y. Huang, L. Fang, Y. Fang. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles. Nanoscale, 8, 3720(2016).

    [28] S. Yoo, Q. H. Park. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics, 8, 249(2019).

    CLP Journals

    [1] Wentao Zhang, Weijie Shi, Hui Guo, Changchun Yan, "Mid-infrared flat-topped broadband chiral helix metamaterials based on indium tin oxide and their chiral properties," Chin. Opt. Lett. 19, 111601 (2021)

    Data from CrossRef

    [1] Yu Qu, Lei Lei, Yu Yu, Xinliang Zhang, Zhengfang Qian. Coexistence of circular dichroism and asymmetric transmission in Babinet-complementary metamaterials. Optics Express, 30, 30394(2022).

    Jian Zhang, Rui Tu, Chao Huang, Xiaoli Yao, Xin Hu, Haixiong Ge, Xuefeng Zhang, "Chiral plasmonic nanostructure of twistedly stacked nanogaps," Chin. Opt. Lett. 19, 013601 (2021)
    Download Citation