• Opto-Electronic Engineering
  • Vol. 47, Issue 5, 190543 (2020)
Shi Xiaoyu1, Wang Dayong1、2、*, Rong Lu1、2, Zhao Jie1, and Wang Yunxin1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190543 Cite this Article
    Shi Xiaoyu, Wang Dayong, Rong Lu, Zhao Jie, Wang Yunxin. Phase contrast imaging based on continuous-wave terahertz digital holography[J]. Opto-Electronic Engineering, 2020, 47(5): 190543 Copy Citation Text show less
    References

    [1] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1): 16–18.

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97–105.

    [3] De Cumis U S, Xu J H, Masini L, et al. Terahertz confocal microscopy with a quantum cascade laser source[J]. Optics Express, 2012, 20(20): 21924–21931.

    [4] Suga M, Sasaki Y, Sasahara T, et al. THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept[J]. Optics Express, 2013, 21(21): 25389–25402.

    [5] Fischer B M, Hoffmann M, Helm H, et al. Terahertz time-domain spectroscopy and imaging of artificial RNA[J]. Optics Express, 2005, 13(14): 5205–5215.

    [6] Zhong H, Redo-Sanchez A, Zhang X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130–9141.

    [7] Bianco V, Memmolo P, Leo M, et al. Strategies for reducing speckle noise in digital holography[J]. Light: Science & Applications, 2018, 7(1): 48.

    [8] Nelson J W, Knefelkamp G R, Brolo A G, et al. Digital plasmonic holography[J]. Light: Science & Applications, 2018, 7(1): 52.

    [9] Tikan A, Bielawski S, Szwaj C, et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography[J]. Nature Photonics, 2018, 12(4): 228–234.

    [10] Schnars U, Falldorf C, Watson J, et al. Digital Holography and Wavefront Sensing[M]. New York: Springer, 2015.

    [11] Asundi A. Digital Holography for MEMS and Microsystem Metrology[M]. Chichester/Hoboken: Wiley, 2011.

    [12] Minamide H, Ito H. Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging[J]. Comptes Rendus Physique, 2010, 11(7–8): 457–471.

    [13] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553–556.

    [14] Rochat M, Ajili L, Willenberg H, et al. Low-threshold terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2002, 81(8): 1381–1383.

    [15] Kumar S. Recent progress in terahertz quantum cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 38–47.

    [16] Gribnikov Z S, Bashirov R R, Mitin V V. Negative effective mass mechanism of negative differential drift velocity and terahertz generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 630–640.

    [17] Maestrini A, Thomas B, Wang H, et al. Schottky diode-based terahertz frequency multipliers and mixers[J]. Comptes Rendus Physique, 2010, 11(7–8): 480–495.

    [18] Dobroiu A, Yamashita M, Ohshima Y N, et al. Terahertz imaging system based on a backward-wave oscillator[J]. Applied Optics, 2004, 43(30): 5637–5646.

    [19] Martens S, Gompf B, Dressel M. Characterization of continuous-wave terahertz sources: laser mixing versus backward-wave oscillators[J]. Applied Optics, 2009, 48(29): 5490–5496.

    [20] Baik C W, Son Y M, Kim S I, et al. Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging[C]//Proceedings of 2008 IEEE International Vacuum Electronics Conference, 2008: 398–399.

    [21] Wan M, Muniraj I, Malallah R, et al. Sparsity based terahertz reflective off-axis digital holography[J]. Proceedings of SPIE, 2017, 10233: 102330T.

    [22] Valzania L, Feurer T, Zolliker P, et al. Terahertz ptychography[J]. Optics Letters, 2018, 43(3): 543–546.

    [23] Hack E, Zolliker P. Terahertz holography for imaging amplitude and phase objects[J]. Optics Express, 2014, 22(13): 16079–16086.

    [24] Zolliker P, Hack E. THz holography in reflection using a high resolution microbolometer array[J]. Optics Express, 2015, 23(9): 10957–10967.

    [25] Locatelli M, Ravaro M, Bartalini S, et al. Real-time terahertz digital holography with a quantum cascade laser[J]. Scientific Reports, 2015, 5: 13566.

    [26] Li Z Y, Yan Q, Qin Y, et al. Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution[J]. Optics Express, 2019, 27(2): 702–713.

    [27] Deng Q H, Li W H, Wang X M, et al. High-resolution terahertz inline digital holography based on quantum cascade laser[J]. Optical Engineering, 2017, 56(11): 113102.

    [28] Huang H C. The research on continuous-wave terahertz in-line digital holographic imaging method[D]. Beijing: Beijing University of Technology, 2017.

    [29] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. Greenwoood Village: Roberts & Company Publishers, 2005.

    [30] Mahon R, Murphy A, Lanigan W. Terahertz holographic image reconstruction and analysis[C]//Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004: 749–750.

    [31] Mahon R J, Murphy J A, Lanigan W. Digital holography at millimetre wavelengths[J]. Optics Communications, 2006, 260(2): 469–473.

    [32] Heimbeck M S, Kim M K, Gregory D A, et al. Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods[J]. Optics Express, 2011, 19(10): 9192–9200.

    [33] Ding S H, Li Q, Li Y D, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993–1995.

    [34] Li Q, Li Y D, Ding S H, et al. Terahertz computed tomography using a continuous-wave gas laser[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(5): 548–558.

    [35] Li Q, Ding S H, Li Y D, et al. Experimental research on resolution improvement in CW THz digital holography[J]. Applied Physics B, 2012, 107: 103–110.

    [36] Yamagiwa M, Ogawa T, Minamikawa T, et al. Real-time amplitude and phase imaging of optically opaque objects by combining full-field off-axis terahertz digital holography with angular spectrum reconstruction[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 561–572.

    [37] Cherkassky V S, Knyazev B A, Kubarev V V, et al. Imaging techniques for a high-power THz free electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543(1): 102–109.

    [38] Tamminen A, Ala-Laurinaho J, Raisanen A V. Indirect holographic imaging at 310 GHz[C]//Proceedings of 2008 European Radar Conference, 2008: 168–171.

    [39] Wang X K, Hou L, Zhang Y. Continuous-wave terahertz interferometry with multiwavelength phase unwrapping[J]. Applied Optics, 2010, 49(27): 5095–5102.

    [40] Wang Y X, Zhao Z R, Chen Z Q, et al. Continuous-wave terahertz phase imaging using a far-infrared laser interferometer[J]. Applied Optics, 2011, 50(35): 6452–6460.

    [41] Gao X, Li C, Fang G Y. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver[J]. Journal of the Optical Society of America A, 2013, 30(6): 1291–1296.

    [42] Humphreys M, Grant J P, Escorcia-Carranza I, et al. Video-rate terahertz digital holographic imaging system[J]. Optics Express, 2018, 26(20): 25805–25813.

    [43] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2): 156–158.

    [44] Wang D Y, Zhao Y L, Rong L, et al. Expanding the field-of-view and profile measurement of covered objects in continuous-wave terahertz reflective digital holography[J]. Optical Engineering, 2019, 58(2): 023111.

    [45] Wang D Y, Huang H C, Zhou X, et al. Phase-contrast imaging by the continuous-wave terahertz line digital holography[J]. Chinese Journal of Lasers, 2014, 41(8): 232–237.

    [46] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27–29.

    [47] Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography[J]. Optics Letters, 2012, 37(15): 3228–3230.

    [48] Li Q, Xue K, Li Y D, et al. Experimental research on terahertz Gabor inline digital holography of concealed objects[J]. Applied Optics, 2012, 51(29): 7052–7058.

    [49] Rong L, Latychevskaia T, Wang D Y, et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation[J]. Optics Express, 2014, 22(14): 17236–17245.

    [50] Hu J Q, Li Q, Yang Y F. Simulation research on continuous Terahertz inline digital holography imaging based on phase retrieval algorithm[J]. Laser & Optoelectronics Progress, 2015, 52(1): 92–98.

    [51] Rong L, Latychevskaia T, Chen C H, et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue[J]. Scientific Reports, 2015, 5: 8445.

    [52] Hu J Q, Li Q, Cui S S. Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction[J]. Applied Optics, 2014, 53(30): 7112–7119.

    [53] Hu J Q, Li Q, Zhou Y. Support-domain constrained phase retrieval algorithms in terahertz in-line digital holography reconstruction of a nonisolated amplitude object[J]. Applied Optics, 2016, 55(2): 379–386.

    [54] Hu J Q, Li Q, Chen G H. Reconstruction of double-exposed terahertz hologram of non-isolated object[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(4): 328–339.

    [55] Huang H C, Rong L, Wang D Y, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Applied Optics, 2016, 55(3): A43–A48.

    [56] Wan M, Li W H, Wang D Y, et al. Digital holography of continuous terahertz wave synthetic aperture[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(3): 358–363.

    [57] Chen G H, Li Q. Markov chain Monte Carlo sampling based terahertz holography image denoising[J]. Applied Optics, 2015, 54(14): 4345–4351.

    [58] Cui S S, Li Q. De-noising research on terahertz digital holography based on wavelet transform[J]. Infrared and Laser Engineering, 2015, 44(6): 1836–1840.

    [59] Huang H C, Wang D Y, Rong L, et al. Application of autofocusing methods in continuous-wave terahertz in-line digital holography[J]. Optics Communications, 2015, 346: 93–98.

    [60] Huang H C, Wang D Y, Li W H, et al. Continuous-wave terahertz multi-plane in-line digital holography[J]. Optics and Lasers in Engineering, 2017, 94: 76–81.

    [61] Li Z Y, Li L, Qin Y, et al. Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction[J]. Optics Express, 2016, 24(18): 21134–21146.

    [62] Ibrahim D G A. Steep large film thickness measurement with off-axis terahertz digital holography reconstructed by a direct Fourier and Hermite polynomial[J]. Applied Optics, 2018, 57(10): 2533–2538.

    [63] Huang H C, Wang D Y, Rong L, et al. Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing[J]. Optics Communications, 2018, 426: 612–622.

    [64] Zhang Y, Zhou W, Wang X, et al. Terahertz digital holography[J]. Strain, 2008, 44(5): 380–385.

    [65] Wang X K, Cui Y, Hu D, et al. Terahertz quasi-near-field real-time imaging[J]. Optics Communications, 2009, 282(24): 4683–4687.

    [66] Wang X K, Cui Y, Sun W F, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626–4632.

    [67] Wang X K, Cui Y, Sun W F, et al. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. Journal of the Optical Society of America A, 2010, 27(11): 2387–2393.

    [68] Guo L H, Wand X K, Zhang Y. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611–615.

    [69] Zheng X H, Wang X K, Sun W F, et al. Developments and applications of the Terahertz digital holography[J]. Chinese Journal of Lasers, 2014, 41(2): 24–34.

    [70] Shi J, Wang X K, Zheng X H, et al. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131–147.

    [71] Petrov N V, Kulya M S, Tsypkin A N, et al. Application of terahertz pulse time-domain holography for phase imaging[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(3): 464–472.

    [72] Balbekin N S, Kulya M S, Petrov N V. Terahertz pulse time-domain holography in dispersive media[J]. Computer Optics, 2017, 41(3): 348–355.

    [73] Kulya M, Petrov N V, Tsypkin A, et al. Hyperspectral data denoising for terahertz pulse time-domain holography[J]. Optics Express, 2019, 27(13): 18456–18476.

    Shi Xiaoyu, Wang Dayong, Rong Lu, Zhao Jie, Wang Yunxin. Phase contrast imaging based on continuous-wave terahertz digital holography[J]. Opto-Electronic Engineering, 2020, 47(5): 190543
    Download Citation