• Infrared and Laser Engineering
  • Vol. 45, Issue 10, 1025001 (2016)
Li Zhongyang*, Tan Lian, Bing Pibin, and Yuan Sheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201645.1025001 Cite this Article
    Li Zhongyang, Tan Lian, Bing Pibin, Yuan Sheng. Terahertz generation by OH1 based on cascaded difference frequency generation[J]. Infrared and Laser Engineering, 2016, 45(10): 1025001 Copy Citation Text show less
    References

    [1] Su J P, Ma F Y, Yu Z F, et al. Theoretical design of terahertz-wave parametric oscillator based on LiNbO3 crystal [J]. Infrared and Laser Engineering, 2010, 39(3): 482-486. (in Chinese)

    [2] Lu Y M, Wang J C, Shi J M, et al. Application of THz technology for detection in soot and wind-blown sand[J]. Infrared and Laser Engineering, 2010, 39(3): 487-490. (in Chinese)

    [3] Johnston M. Plasmonics: Superfocusing of terahertz waves [J]. Nature Photon, 2007, 1: 14-15.

    [4] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photon, 2007, 1: 97-105.

    [6] Yeh K L, Hoffmann M C, Hebling J, et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification [J]. Appl Phys Lett, 2007, 90(17): 171121.

    [7] Williams B S. Terahertz quantum-cascade lasers [J]. Nature Photon, 2007, 1: 517-525.

    [8] Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electrons[J]. Nature, 2002, 420: 153-156.

    [9] Ding Y J. Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies [J]. IEEE J Sel Top Quantum Electron, 2004, 10(5): 1171-1179.

    [10] Knap W, Lusakowski J, Parenty T, et al. Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors [J]. Appl Phys Lett, 2004, 84(13): 2331-2333.

    [11] Ding Y J. Progress in terahertz sources based on difference-frequency generation [Invited][J]. J Opt Soc Am B, 2014, 31(11): 2696-2711.

    [12] Majkic A, Zgonik M, Petelin A, et al. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1 [J]. Appl Phys Lett, 2014, 105(14): 141115.

    [13] Dolasinski B, Powers P E, Haus J W, et al. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG [J]. Opt Express, 2015, 23(3): 3669-3680.

    [14] Saito K, Tanabe T, Oyama Y. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing [J]. Appl Opt, 2014, 53(17): 3587-3592.

    [15] Brunner F D J, Kwon O P, Kwon S J, et al. A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection [J]. Opt Express, 2008, 16(21): 16496-16508.

    [16] Hunziker C, Kwon S J, Figi H, et al. Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile: linear and nonlinear optical properties[J]. J Opt Soc Am B, 2008, 25(10): 1678-1683.

    [17] Uchida H, Sugiyama T, Suizu K, et al. Generation of widely tunable terahertz waves by difference-frequency generation using a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile crystal [J]. Terahertz Sci Technol, 2011, 4(3): 132-136.

    [18] Liu P, Xu D, Yu H, et al. Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation[J]. J Lightwave Technol, 2013, 31(15): 2508-2514.

    [19] Lee A J, Pask H M. Cascaded stimulated polariton scattering in a Mg:LiNbO3 terahertz laser[J]. Opt Express, 2015, 23(7): 8687-8698.

    [20] Saito K, Tanabe T, Oyama Y. Cascaded terahertz-wave generation efficiency in excess of the Manley-Rowe limit using a cavity phase-matched optical parametric oscillator [J]. J Opt Soc Am B, 2015, 32(4): 617-621.

    Li Zhongyang, Tan Lian, Bing Pibin, Yuan Sheng. Terahertz generation by OH1 based on cascaded difference frequency generation[J]. Infrared and Laser Engineering, 2016, 45(10): 1025001
    Download Citation