[2] HAZUCHA P, SCHROM G, HAHN J, et al. A 233-MHz 80%-87% efficient four-phase DC-DC converter utilizing air-core inductors on package [J]. IEEE J Sol Sta Circ, 2005, 40(4): 838-845.
[3] CHO J H, KIM D K, AE H H, et al. A 1.23 W/mm2 83.7%-efficiency 400 MHz 6-phase fully integrated buck converter in 28 nm CMOS with on-chip capacitor dynamic re-allocation for inter-inductor current balancing and fast DVS of 75 mV/ns [C]// IEEE ISSCC. San Francisco, CA, USA. 2022, 65: 1-3.
[6] HUANG C, MOK P K T. A 100 MHz 82.4% efficiency package-bondwire based four-phase fully-integrated buck converter with flying capacitor for area reduction [J]. IEEE J Sol Sta Circ, 2013, 48(12): 2977-2988.
[7] KIM S J, NANDWANA R K, KHAN Q, et al. A 4-phase 30-70 MHz switching frequency buck converter using a time-based compensator [J]. IEEE J Sol Sta Circ, 2015, 50(12): 2814-2824.
[8] LI P F, XUE L, HAZUCHA P, et al. A delay-locked loop synchronization scheme for high-frequency multiphase hysteretic DC-DC converters [J]. IEEE J Sol Sta Circ, 2009, 44(11): 3131-3145.
[9] SANKMAN J, SONG M K,MA D. Switching converter only multiphase envelope modulator with slew rate enhancer for LTE power amplifier applications [J]. IEEE Trans Power Elec, 2015, 31(1): 817-826.
[10] LEE B, SONG M K, MAITY A, et al. A 25-MHz four-phase SAW hysteretic control DC–DC converter with 1-cycle active phase count [J]. IEEE J Sol Sta Circ, 2019, 54(6): 1755-1763.
[11] AHN Y, JEON I, ROH J. A multiphase buck converter with a rotating phase-shedding scheme for efficient light-load control [J]. IEEE J Sol Sta Circ, 2014, 49(11): 2673-2683.
[12] QU Y, SHU W, CHANG J S. A low-EMI, high-reliability PWM-based dual-phase LED driver for automotive lighting [J]. IEEE J Emerg Selected Topic Power Elec, 2018, 6(3): 1179-1189.
[13] SONG M K, SANKMAN J, MA D. A 6 A 40 MHz four-phase ZDS hysteretic DC-DC converter with 118 mV droop and 230 ns response time for a 5 A/5 ns load transient [C]// IEEE ISSCC. San Francisco, CA, USA. 2014: 80-81.
[14] HUANG M, LU Y, MARTINS R P. A 2-phase soft-charging hybrid boost converter with doubled- switching pulse width and shared bootstrap capacitor achieving 93.5% efficiency at a conversion ratio of 4.5 [C]// IEEE ISSCC. San Francisco, CA, USA. 2020: 198-200.
[17] HUANG Y W, KUO T H, HUANG S Y, et al. A four-phase buck converter with capacitor-current-sensor calibration for load-transient-response optimization that reduces undershoot/overshoot and shortens settling time to near their theoretical limits [J]. IEEE J Sol Sta Circ, 2017, 53(2): 552-568.
[20] ROH Y S, MOON Y J, PARK J, et al. A multiphase synchronous buck converter with a fully integrated current balancing scheme [J]. IEEE Trans Power Elec, 2014, 30(9): 5159-5169.
[21] TANG J, GUO T, KIM J S, et al. A current-mode four-phase synchronous buck converter with dynamic dead-time control [J]. IEEE Access, 2021, 9: 81078- 81088.
[22] MAI Y Y, MOK P K T. A constant frequency output-ripple-voltage-based buck converter without using large ESR capacitor [J]. IEEE Trans Circ Syst II: Expr Brie, 2008, 55(8): 748-752.
[23] ABU-QAHOUQ J, MAO H, BATARSEH I. Multiphase voltage-mode hysteretic controlled DC-DC converter with novel current sharing [J]. IEEE Trans Power Elec, 2004, 19(6): 1397-1407.
[25] CHENG K Y, YU F, LEE F C, et al. Digital enhanced V2-type constant on-time control using inductor current ramp estimation for a buck converter with low-ESR capacitors [J]. IEEE Trans Power Elec, 2012, 28(3): 1241-1252.
[26] CHEN J J, HWANG Y S, CHANG C H, et al. A sub-1 μs fast-response buck converter with adaptive and frequency-locked controlled techniques [J]. IEEE Trans Indust Elec, 2018, 66(3): 2198-2203.
[28] CHOI M, KYE C H, OH J, et al. A synthesizable digital AOT 4-phase buck voltage regulator for digital systems with 0.0054 mm2 controller and 80 ns recovery time [C]// IEEE ISSCC. San Francisco, CA, USA. 2019: 432-434.
[29] CHEN Y, MA D B. A 10-MHz closed-loop EMI-regulated GaN switching power converter using emulated Miller plateau tracking and adaptive strength gate driving [J]. IEEE J Sol Sta Circ, 2020, 56(2): 531-540.
[30] YAN D, KE X, MA D B. A two-phase 2 MHz DSD GaN power converter with master-slave AO2T control for direct 48 V/1 V DC-DC conversion [C]// Symp VLSI Circ. Kyoto, Japan. 2019: C170-C171.
[31] SONG M K, CHEN L, SANKMAN J, et al. On-chip HV bootstrap gate driving for GaN compatible power circuits operating above 10 MHz [J]. IEEE J Sol Sta Circ, 2021, 57(3): 942-952.
[32] KE X, YAN D, SANKMAN J, et al. A 3-to-40-V automotive-use GaN driver with active bootstrap balancing and VSW dual-edge dead-time modulation techniques [J]. IEEE J Sol Sta Circ, 2020, 56(2): 521-530.
[33] YAN D, KE X, MA D B. Direct 48-/1-V GaN-based DC-DC power converter with double step-down architecture and master-slave AO2T control [J]. IEEE J Sol Sta Circ, 2019, 55(4): 988-998.
[34] LEHMANN J, ROSSBERG M, BEHR O, et al. High-voltage fully integrated gate driver IC with galvanic isolation based on embedded coreless transformers [C]// IEEE 34th ISPSD. Vancouver, BC, Canada. 2022: 25-28.
[35] LEE S Y, LIAO Z X, LEE C H. Energy-harvesting circuits with a high-efficiency rectifier and a low temperature coefficient bandgap voltage reference [J]. IEEE Trans VLSI Syst, 2019, 27(8): 1760-1767.
[36] MING X, FAN Z, XIN Y, et al. An advanced bootstrap circuit for high frequency, high area-efficiency and low EMI buck converter [J]. IEEE Trans Circ Syst II: Expr Brie, 2019, 66(5): 858-862.
[37] GARCIA-MONTESDEOCA J C, MONTIEL-NELSON J A, NOOSHABADI S. High performance bootstrapped CMOS dual supply level shifter for 0.5 V input and 1 V output [C]// 12th Euromicro Conf Digital Syst Design, Architec, Methods Tools. Patras, Greece. 2009: 311-314.
[38] CHEN W C, CGOU Y W, CHIEN M W, et al. A dynamic bootstrap voltage technique for a high-efficiency buck converter in a universal serial bus power delivery device [J]. IEEE Trans Power Elec, 2015, 31(4): 3002-3015.
[40] MA H, NAMGOONG G, CHOI E, et al. Instantaneous power consuming level shifter for improving power conversion efficiency of buck converter [J]. IEEE Trans Circ Syst II: Expr Brie, 2018, 66(7): 1207-1211.
[41] LIU Z, CONG L, LEE H. Design of on-chip gate drivers with power-efficient high-speed level shifting and dynamic timing control for high-voltage synchronous switching power converters [J]. IEEE J Sol Sta Circ, 2015, 50(6): 1463-1477.
[43] HUBER L, JONANOVIC M M. Comparison of audible noise caused by magnetic components in switch-mode power supplies operating in burst mode and frequency-foldback mode [C]// IEEE APEC . Fort Worth, TX, USA. 2014: 2895-2901.
[45] HOANG N K, LEE S, WOO Y J. A zero current detector with low negative inductor current using forced freewheel switch operation in synchronous DC-DC converter [C]// IEEE Fifth ICCE. Danang, Vietnam. 2014: 318-322.
[46] PARK Y J, PARK J H, KIM H J, et al. A design of a 92.4% efficiency triple mode control DC–DC buck converter with low power retention mode and adaptive zero current detector for IoT/wearable applications [J]. IEEE Trans Power Elec, 2016, 32(9): 6946-6960.
[48] AHN Y, JEON I, ROH J. A multiphase buck converter with a rotating phase-shedding scheme for efficient light-load control [J]. IEEE J Sol Sta Circ, 2014, 49(11): 2673-2683.
[49] MAN T Y, MOK P K T, CHAN M J. A 0.9-V input discontinuous-conduction-mode boost converter with CMOS-control rectifier [J]. IEEE J Sol Sta Circ, 2008, 43(9): 2036-2046.
[50] PARK Y J, PARK J H, KIM H J, et al. A design of a 92.4% efficiency triple mode control DC-DC buck converter with low power retention mode and adaptive zero current detector for IoT/wearable applications [J]. IEEE Trans Power Electron, 2016, 32(9): 6946-6960.
[51] CHEN P H, WU C S, LIN K C. A 50 nW-to-10 mW output power tri-mode digital buck converter with self-tracking zero current detection for photovoltaic energy harvesting [J]. IEEE J Sol Sta Circ, 2016, 51(2): 523-532.
[52] KIM S Y, PARK Y J, ALI I, et al. Design of a high efficiency DC-DC buck converter with two-step digital PWM and low power self-tracking zero current detector for IoT applications [J]. IEEE Trans Power Elec, 2017, 33(2): 1428-1439.
[53] KARACA T, AUER M. A class-D output bridge with dynamic dead-time, small delay and reduced EMI [C]// IEEE ISCAS. Baltimore, MD, USA. 2017: 1-4.
[54] LEE H, RYU S R. An efficiency-enhanced DCM buck regulator with improved switching timing of power transistors [J]. IEEE Trans Circ Syst II: Expr Brie, 2010, 57(3): 238-242.
[55] GREZAUD R, AYEL F, ROUGER N, et al. A gate driver with integrated deadtime controller [J]. IEEE Trans Power Elec, 2016, 31(12): 8409-8421.
[56] NG W T, CHEN S. Precision gate drive timing in a zero-voltage-switching DC-DC converter [C]// Proceed 16th Int Symp Power Semicond Dev ICs. Kitakyushu, Japan. 2004: 55-58.
[57] KE X, SANKMAN J, SONG M K, et al. A 3-to-40 V 10-to-30 MHz automotive-use GaN driver with active BST balancing and VSW dual-edge dead-time modulation achieving 8.3% efficiency improvement and 3.4 ns constant propagation delay [C]// IEEE ISSCC. San Francisco, CA, USA. 2016: 302-304.
[58] ZHOU Z, YUAN Y, WANG Y, et al. A predictive gate driver suitable for half-bridge applications [C]// 31st ISPSD. Shanghai, China. 2019: 131-134.
[59] HUANG C, MOK P K T. A 100 MHz 82.4% efficiency package-bondwire based four-phase fully-integrated buck converter with flying capacitor for area reduction [J]. IEEE J Sol Sta Circ, 2013, 48(12): 2977-2988.
[60] SUN M, YANG Z, JOSHI K, et al. A 6 A, 93% peak efficiency, 4-phase digitally synchronized hysteretic buck converter with ±1.5% frequency and ±3.6% current- sharing error [J]. IEEE J Sol State Circ, 2017, 52(11): 3081-3094.
[61] HUANG H W, CHEN K H, KUO S Y. Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications [J]. IEEE J Sol Sta Circ, 2007, 42(11): 2451-2465.
[62] ABDEL-RAHMAN O, ABU-QAHOUQ J A, HUANG L, et al. Analysis and design of voltage regulator with adaptive FET modulation scheme and improved efficiency [J]. IEEE Trans Power Elec, 2008, 23(2): 896-906.
[63] PARK S Y, CHO J, LEE K, et al. A PWM buck converter with load-adaptive power transistor scaling scheme using analog-digital hybrid control for high energy efficiency in implantable biomedical systems [J]. IEEE Trans Biomedical Circ Syst, 2015, 9(6): 885-895.
[64] MULLIGAN M D, BROACH B, LEE T H. A constant-frequency method for improving light-load efficiency in synchronous buck converters [J]. IEEE Power Elec Lett, 2005, 3(1): 24-29.
[65] WANG C C, HSU C J. An on-chip PWM-Based DC-DC buck converter design with high-efficiency light load mode operation [C]// Proc Int Conf Elec Engineer Info. Bangkok, Thailand. 2018: 146-150.
[66] KURSUN V, NARENDRA S G, DE V K, et al. Low-voltage-swing monolithic DC-DC conversion [J]. IEEE Trans Circ Syst II: Expr Brie, 2004, 51(5): 241-248.
[67] MING X, FAN Z, XIN Y, et al. An advanced bootstrap circuit for high frequency, high area-efficiency and low EMI buck converter [J]. IEEE Trans Circ Syst II: Expr Brie, 2019, 66(5): 858-862.
[68] ABDULSLAM A, MERCIER P P. A 98.2%-efficiency reciprocal direct charge recycling inductor-first DC-DC converter [C]// IEEE ISSCC. San Francisco, CA, USA. 2021, 64: 264-266.