[1] A E RINGWOOD, S E KESSON, N G WARE et al. Immobilization of high level nuclear reactor wastes in SYNROC. Nature, 278, 219-223(1979).
[2] A I ORLOVA, M I OJOVAN. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2638(2019).
[3] B M CLARK, P TUMURUGOTI, S K SUNDARAM et al. Preparation and characterization of multiphase ceramic designer waste forms. Scientific Reports, 4512(2021).
[4] S X WANG, B D BEGG, L M WANG et al. Radiation stability of gadolinium zirconate: a waste form for plutonium disposition. Journal of Materials Research, 4470-4473(1999).
[5] K YANG, B KEITH, W ZHU et al. Multicomponent pyrochlore solid solutions with uranium incorporation-a new perspective of materials design for nuclear applications. Journal of the European Ceramic Society, 2870-2882(2021).
[6] J LIAN, L M WANG, R G HAIRE et al. Ion beam irradiation in La2Zr2O7-Ce2Zr2O7pyrochlore. Nuclear Instruments and Methods in Physics Research Section B, 218, 236-243(2004).
[7] S K SHARMA, V GROVER, A K TYAGI et al. Probing the temperature effects in the radiation stability of Nd2Zr2O7 pyrochlore under swift ion irradiation. Materialia, 6, 2589-1529(2019).
[8] B C CHAKOUMAKOS. Systematics of the pyrochlore structure type, ideal A2B2X6Y. Journal of Solid State Chemistry, 120-129(1984).
[9] J SUN, J ZHOU, Z HU et al. Controllable sites and high-capacity immobilization of uranium in Nd2Zr2O7 pyrochlore. Journal of Synchrotron Radiation, 29, 37-44(2022).
[10] R C BELIN, P J VALENZA, P E RAISON, M TILLARD. Synthesis and Rietveld structure refinement of americium pyrochlore Am2Zr2O7. Journal of Alloys and Compounds, 321-324(2008).
[11] N K KULKARNI, S SAMPATH, V VENUGOPAL. Preparation and characterisation of Pu-pyrochlore: [La1-xPux]2Zr2O7 (x=0-1). Journal of Nuclear Materials, 248-250(2000).
[12] B P MANDAL, N GARG, S M SHARMA et al. Solubility of ThO2 in Gd2Zr2O7 pyrochlore: XRD, SEM and Raman spectroscopic studies. Journal of Nuclear Materials, 95-99(2009).
[13] K V G KUTTY, R ASUVATHRAMAN, R R MADHAVAN et al. Actinide immobilization in crystalline matrix: a study of uranium incorporation in gadolinium zirconate. Journal of Physics and Chemistry of Solids, 596-601(2005).
[14] Z TANG, Z Y HUANG, W HAN et al. Uranium-incorporated pyrochlore La2(UxMgxZr1-2x)2O7 nuclear waste form: structure and phase stability. Inorganic Chemistry, 9919-9926(2020).
[15] J LIAN, J CHEN, L M WANG et al. Radiation-induced amorphization of rare-earth titanate pyrochlores. Physical Review B, 134107(2003).
[16] S X WANG, G R LUMPKIN, L M WANG et al. Ion irradiation- induced amorphization of six zirconolite compositions. Nuclear Instruments and Methods in Physics Research Section B, 293-298(2000).
[17] C NÄSTREN, R JARDIN, J SOMERS et al. Actinide incorporation in a zirconia based pyrochlore (Nd1.8An0.2)Zr2O7+x (An=Th, U, Np, Pu, Am). Journal of Solid State Chemistry, 1-7(2009).
[18] A THAKUR, B SINGH, P D KRISHNANI. In-core fuel management for AHWR. Annals of Nuclear Energy, 57, 47-58(2013).
[19] Z M DAI. Thorium molten salt reactor nuclear energy system (TMSR). Molten Salt Reactors and Thorium Energy, 17, 531-540(2017).
[20] L L WANG, J B LI, H XIE et al. Solubility, structure transition and chemical durability of Th-doped Nd2Zr2O7 pyrochlore. Progress in Nuclear Energy, 103774(2021).
[21] B H TOBY, EXPGUI. A graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213(2001).
[22] ASTM. Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste. Annual Book of ASTM Standards. C1220-92., 681-695(1992).
[23] D M STRACHAN. Results from long-term use of the MCC-1 static leach test method. Nuclear and Chemical Waste Management, 177-188(1983).
[24] B P MANDAL, P S R KRISHNA, A K TYAGI. Order-disorder transition in the Nd2-yYyZr2O7 system: Probed by X-ray diffraction and Raman spectroscopy. Journal of Solid State Chemistry, 41-45(2010).
[25] Z QU, C WAN, W PAN. Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7. Chemistry of Materials, 4913(2007).
[26] M T VANDENBORRE, E HUSSON, J P CHATRY et al. Rare- earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields. Journal of Raman Spectroscopy, 14, 63-71(1983).
[27] C NANDI, R PHATAK, S KESARI et al. Phase evolution in [Nd1-xUx]2Zr2O7+δ system in oxidizing and reducing conditions: a nuclear waste form. Journal of Nuclear Materials, 153208(2021).
[28] I HAYAKAWA, H KAMIZONO. Durability of an La2Zr2O7 waste form in water. Journal of Nuclear Materials, 28, 513-517(1993).
[29] W J WEBER, A NAVROTSKY, S STEFANOVSKY et al. Materials science of high-level nuclear waste immobilization. MRS Bulletin, 34, 46-53(2009).
[30] B W GONG, K YANG, J A LIAN et al. Machine learning- enabled prediction of chemical durability of A2B2O7 pyrochlore and fluorite. Computational Materials Science, 110820(2021).
[31] Z Q FENG, H XIE, L L WANG et al. Glass-ceramics with internally crystallized pyrochlore for the immobilization of uranium wastes. Ceramics International, 16999-17005(2019).