• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1714002 (2021)
Wei Peng1、* and Hui Lei2
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Henan Polytechnic, Zhengzhou , Henan 450046, China
  • 2School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou , Henan 450001, China
  • show less
    DOI: 10.3788/LOP202158.1714002 Cite this Article Set citation alerts
    Wei Peng, Hui Lei. Effect of Energy Density on Surface Morphology and Properties of H13 Mold Steel via Picosecond Laser Cleaning[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714002 Copy Citation Text show less
    References

    [1] Kang J W, You R, Nie G et al. Study on the thermal fatigue life of H13 steel for aluminum alloy casting[J]. Journal of Mechanical Engineering, 48, 63-68(2012).

    [2] Okada A, Okamoto Y, Uno Y et al. Improvement of surface characteristics for long life of metal molds by large-area EB irradiation[J]. Journal of Materials Processing Technology, 214, 1740-1748(2014).

    [3] Gu J B. Study on strengthening-toughening mechanism and heat treatment of nitrogen-alloyed hot-working die steel[D](2020).

    [4] Wang L H, Wang S Y, Cheng Y F et al. Research on surface morphology and element distribution of aluminum alloy after laser cleaning[J]. Hot Working Technology, 49, 102-106(2020).

    [5] Zhou C, Li H G, Chen G Y et al. Effect of single pulsed picosecond and 100 nanosecond laser cleaning on surface morphology and welding quality of aluminium alloy[J]. Optics & Laser Technology, 127, 106197(2020).

    [6] Wang Y S, Wang C G N. Laser cleaning and protection of industrial heritage steel structure[J]. Journal of Shenzhen University (Science and Engineering), 37, 466-473(2020).

    [7] Zhu G D, Wang S R, Cheng W et al. Corrosion and wear performance of aircraft skin after laser cleaning[J]. Optics & Laser Technology, 132, 106475(2020).

    [8] Li X G, Huang T T, Chong A W et al. Laser cleaning of steel structure surface for paint removal and repaint adhesion[J]. Opto-Electronic Engineering, 44, 340-344(2017).

    [9] Li W. Research on mechanisms of laser rust removal and manufacture of laser cleaning devices[D](2014).

    [10] Tian Z, Lei Z L, Chen X et al. Evaluation of laser cleaning for defouling of marine biofilm contamination on aluminum alloys[J]. Applied Surface Science, 499, 144060(2020).

    [11] Liu B W, Mi G Y, Wang C M et al. Research on grain refinement and wear behavior of micro-remelted TA15 alloy surface by laser cleaning[J]. Materials Chemistry and Physics, 259, 124022(2021).

    [12] Chen Y M, Zhou L Z, Yan F et al. Mechanism and quality evaluation of laser cleaning of aluminum alloy[J]. Chinese Journal of Lasers, 44, 1202005(2017).

    [13] Qiu T W, Yi J L, Cheng C et al. Characteristics of nanosecond pulse laser cleaning paint coatings from 2024 Al alloy surface[J]. Laser & Optoelectronics Progress, 58, 0514001(2021).

    [14] Palomar T, Oujja M, Llorente I et al. Evaluation of laser cleaning for the restoration of tarnished silver artifacts[J]. Applied Surface Science, 387, 118-127(2016).

    [15] Lu Z Y, Xu Z Q, Meng C et al. Numerical simulation of electromagnetic pulse in target chamber of nanosecond laser inertial confinement facility[J]. Acta Optica Sinica, 40, 0914001(2020).

    [16] Ji L F, Yan T Y, Jiang R et al. Picosecond laser precision processing of ceramic gear[J]. Laser & Optoelectronics Progress, 57, 111429(2020).

    [17] Wang L L. Study on effect of magnesium on inclusion and properties of H13 hot work die steel[D](2015).

    [18] Zhu H M, Hu W F, Li Y Z et al. Effect of tempering temperature on microstructure and properties of laser-cladded martensitic stainless steel layer[J]. Chinese Journal of Lasers, 46, 1202001(2019).

    [19] Lu Y, Yang L J, Wang M L et al. Simulation of nanosecond laser cleaning the paint based on the thermal stress[J]. Optik, 227, 165589(2021).

    Wei Peng, Hui Lei. Effect of Energy Density on Surface Morphology and Properties of H13 Mold Steel via Picosecond Laser Cleaning[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714002
    Download Citation