• Opto-Electronic Engineering
  • Vol. 48, Issue 4, 200325 (2021)
Dai Teng1、2, Zhang Ke1、2, and Yin Dong1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2021.200325 Cite this Article
    Dai Teng, Zhang Ke, Yin Dong. An end-to-end neural network for mobile phone detection in driving scenarios[J]. Opto-Electronic Engineering, 2021, 48(4): 200325 Copy Citation Text show less
    References

    [1] Rodríguez-Ascariz J M, Boquete L, Cantos J, et al. Automatic system for detecting driver use of mobile phones[J]. Transp Res C Emergi Technol, 2011, 19(4): 673–681. 10.1016/j.trc.2010.12.002.

    [2] Leem S K, Khan F, Cho S H. Vital sign monitoring and mobile phone usage detection using IR-UWB radar for intended use in car crash prevention[J]. Sensors (Basel), 2017, 17(6): 1240. 10.3390/s17061240.

    [3] Berri R A, Silva A G, Parpinelli R S, et al. A pattern recognition system for detecting use of mobile phones while driving[C]//Proceedings of the 9th International Conference on Computer Vision Theory and Applications, 2014: 411–418. 10.5220/0004684504110418.

    [4] Cortes C, Vapnik V. Support-vector networks[J]. Mach Learn, 1995, 20(3): 273–297.

    [5] Xiong Q F, Lin J, Wei Y, et al. A deep learning approach to driver distraction detection of using mobile phone[C]//2019 IEEE Vehicle Power and Propulsion Conference, 2019: 1–5. 10.1109/VPPC46532.2019.8952474.

    [6] Shi X P, Shan S G, Kan M N, et al. Real-time rotation-invariant face detection with progressive calibration networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2295–2303.

    [7] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection[Z]. arXiv: 2004.10934, 2020.

    [8] Bishop C. Pattern Recognition and Machine Learning[M]. New York: Springer-Verlag, 2006.

    [9] Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biol Cybern, 1980, 36(4): 193–202.

    [10] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86(11): 2278–2324. 10.1109/5.726791.

    [11] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012.

    [12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//ICLR, 2015.

    [13] Howard A G, Zhu M L, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[Z]. arXiv: 1704.04861, 2017.

    [14] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1–9.

    [15] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770–778.

    [16] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. 10.1109/CVPR.2001.990517.

    [17] Viola P, Jones M J. Robust real-time face detection[J]. Int J Comput Vis, 2004, 57(2): 137–154.

    [18] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886–893.

    [19] Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Trans Pattern Anal Mach Intell, 2010, 32(9): 1627–1645. 10.1109/TPAMI.2009.167.

    [20] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580–587.

    [21] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(9): 1904–1916.

    [22] Girshick R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440–1448.

    [23] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 91–99.

    [24] Dai J F, Li Y, He K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 379–387.

    [25] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779–788.

    [26] Redmon J, Farhadi A. Yolo9000: Better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6517–6525.

    [27] Redmon J, Farhadi A. YOLOv3: An incremental improvement[Z]. arXiv: 1804.02767, 2018.

    [28] Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision, 2016: 21–37.

    [30] Hu P, Ramanan D. Finding tiny faces[Z]. arXiv: 1612.04402, 2016.

    [31] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020: 1571–1580.

    [32] Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759–8768.

    [33] Duan K W, Bai S, Xie L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 6569–6578.

    [34] Zhang H Y, Cisse M, Dauphin Y N, et al. mixup: beyond empirical risk minimization[Z]. arXiv: 1710.09412, 2017.

    Dai Teng, Zhang Ke, Yin Dong. An end-to-end neural network for mobile phone detection in driving scenarios[J]. Opto-Electronic Engineering, 2021, 48(4): 200325
    Download Citation