• Photonic Sensors
  • Vol. 12, Issue 2, 140 (2022)
Yujian LIU1, Cheng LI1、2、*, Shangchun FAN1, and Xuefeng SONG3
Author Affiliations
  • 1School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
  • 2Research Institute of Beihang University in Shenzhen, Shenzhen 518057, China
  • 3Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • show less
    DOI: 10.1007/s13320-021-0636-3 Cite this Article
    Yujian LIU, Cheng LI, Shangchun FAN, Xuefeng SONG. Effect of PMMA Removal Methods on Opto-Mechanical Behaviors of Optical Fiber Resonant Sensor With Graphene Diaphragm[J]. Photonic Sensors, 2022, 12(2): 140 Copy Citation Text show less
    References

    [1] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 2008, 321(5887): 385–388.

    [2] J. Sakamoto, J. van Heijst, O. Lukin, and A. D. Schlüter, “Two-dimensional polymers: just a dream of synthetic chemists,” Angewandte Chemie International Edition, 2009, 48(6): 1030–1069.

    [3] F. Bonaccorso, Z. Sun, T. A. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611–622.

    [4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters, 2008, 8(3): 902–907.

    [5] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, et al., “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nature Nanotechnology, 2008, 3(4): 210–215.

    [6] C. Cen, Y. Zhang, X. Chen, H. Yang, Z. Yi, W. Yao, et al., “A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency,” Physica E: Low-dimensional Systems and Nanostructures, 2020, 117: 113840.

    [7] L. Jiang, C. Yuan, Z. Li, J. Su, Z. Yi, W. Yao, et al., “Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial,” Diamond and Related Materials, 2021, 111(1): 108227.

    [8] Z. Chen, H. Chen, H. Jile, D. Xu, Z. Yi, Y. Lei, et al., “Multi-band multi-tunable perfect plasmon absorber based on L-shaped and double-elliptical graphene stacks,” Diamond and Related Materials, 2021, 115: 108374.

    [9] Z. He, L. Li, H. Ma, L. Pu, H. Xu, Z. Yi, et al., “Graphene-based metasurface sensing applications in terahertz band,” Results in Physics, 2021, 21: 103795.

    [10] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, et al., “Electromechanical resonators from graphene sheets,” Science, 2007, 315(5811): 490–493.

    [11] J. W. Jiang, J. S. Wang, and B. Li, “Young’s modulus of graphene: a molecular dynamics study,” Physical Review B, 2009, 80(11): 113405.

    [12] T. Cui, S. Mukherjee, P. M. Sudeep, G. Colas, F. Najafi, J. Tam, et al., “Fatigue of graphene,” Nature Materials, 2020, 19(4): 405–411.

    [13] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, et al., “Impermeable atomic membranes from graphene sheets,” Nano Letters, 2008, 8(8): 2458–2462.

    [14] V. Singh, S. Sengupta, H. S Solanki, R. Dhall, A. Allain, S. Dhara, et al., “Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators,” Nanotechnology, 2010, 21(16): 165204.

    [15] A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, et al., “Large-scale arrays of single-layer graphene resonators,” Nano Letters, 2010, 10(12): 4869–4873.

    [16] D. Miller and B. Alemán, “Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators,” 2D Materials, 2017, 4(2): 025101.

    [17] X. Song, M. Oksanen, M. A. Sillanp--, H. G. Craighead, J. M. Parpia, and P. J. Hakonen, “Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout,” Nano Letters, 2012, 12(1): 198–202.

    [18] F. Guan, P. Kumaravadivel, D. V. Averin, and X. Du, “Tuning strain in flexible graphene nanoelectromechanical resonators,” Applied Physics Letters, 2015, 107(19): 193102.

    [19] D. Garcia-Sanchez, A. M. van der Zande, A. S. Paulo, B. Lassagne, P. L. McEuen, and A. Bachtold, “Imaging mechanical vibrations in suspended graphene sheets,” Nano Letters, 2008, 8(5): 1399–1403.

    [20] C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, et al., “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nature Nanotechnology, 2009, 4(12): 861–867.

    [21] R. A. Barton, B. Ilic, A. M. van der Zande, W. S. Whitney, P. L. McEuen, J. M. Parpia, et al., “High, size-dependent quality factor in an array of graphene mechanical resonators,” Nano Letters, 2011, 11(3): 1232–1236.

    [22] J. Ma, W. Jin, H. Xuan, C. Wang, and H. L. Ho, “Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film,” Optics Letters, 2014, 39(16): 4769–4772.

    [23] T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal analysis of individual nanoparticulate samples using micromechanical resonators,” ACS Nano, 2013, 7(7): 6188–6193.

    [24] D. Ramos, O. Malvar, Z. J. Davis, J. Tamayo, and M. Calleja, “Nanomechanical plasmon spectroscopy of single gold nanoparticles,” Nano Letters, 2018, 18(11): 7165–7170.

    [25] M. Her, R. Beams, and L. Novotny, “Graphene transfer with reduced residue,” Physics Letters A, 2013, 377(21–22): 1455–1458.

    [26] X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, et al., “Toward clean and crackless transfer of graphene,” ACS Nano, 2011, 5(11): 9144–9153.

    [27] J. Kang, D. Shin, S. Bae, and B. H. Hong, “Graphene transfer: key for applications,” Nanoscale, 2012, 4(18): 5527–5537.

    [28] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, 2009, 457(7230): 706–710.

    [29] S. J. Kang, B. Kim, K. S. Kim, Y. Zhao, Z. Chen, G. H. Lee, et al., “Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs,” Advanced Materials, 2011, 23(31): 3531–3535.

    [30] S. Cha, M. Cha, S. Lee, J. H. Kang, and C. Kim, “Low-temperature, dry transfer-printing of a patterned graphene monolayer,” Scientific Reports, 2015, 5(1): 17877.

    [31] U. Ali, K. J. B. A. Karim, and N. A. Buang, “A review of the properties and applications of Poly (Methyl Methacrylate) (PMMA),” Polymer Reviews, 2015, 55(4): 678–705.

    [32] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, et al., “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Letters, 2009, 9(1): 30–35.

    [33] S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, et al., “Single-layer graphene on silicon nitride micromembrane resonators,” Journal of Applied Physics, 2014, 115(5): 054513.

    [34] G. B. Barin, Y. Song, I. F. Gimenez, A. G. S. Filho, L. S. Barreto, and J. Kong, “Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance,” Carbon, 2015, 84: 82–90.

    [35] D. Mathiesen, D. Vogtmann, and R. B. Dupaix, “Characterization and constitutive modeling of stress-relaxation behavior of Poly (methyl methacrylate) (PMMA) across the glass transition temperature,” Mechanics of Materials, 2014, 71: 74–84.

    [36] W. R. Zeng, S. F. Li, and W. K. Chow, “Review on chemical reactions of burning Poly (methyl methacrylate) PMMA,” Journal of Fire Sciences, 2002, 20(5): 401–433.

    [37] E. Süske, T. Scharf, P. Schaaf, E. Panchenko, D. Nelke, M. Buback, et al., “Variation of the mechanical properties of pulsed laser deposited PMMA films during annealing,” Applied Physics A, 2004, 79(4): 1295–1297.

    [38] Y. Nanzai, A. Miwa, and S. Z. Cui, “Aging in fully annealed and subsequently strained Poly (methyl methacrylate),” Polymer Journal, 2000, 32(1): 51–56.

    [39] M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. L. Mieloszynski, “Thermal degradation of Poly (methyl methacrylate) (PMMA): modelling of DTG and TG curves,” Polymer Degradation and Stability, 2003, 79(2): 271–281.

    [40] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 2009, 324(5932): 1312–1314.

    [41] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, et al., “Controlled ripple texturing of suspended graphene and ultrathin graphite membranes,” Nature Nanotechnology, 2009, 4(9): 562–566.

    [42] S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, et al., “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Letters, 2010, 10(12): 4944–4951.

    [43] Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices,” Nano Letters, 2011, 11(2): 767–771.

    [44] D. R. Southwortha, H. G. Craighead, and J. M. Parpia, “Pressure dependent resonant frequency of micromechanical drumhead resonators,” Applied Physics Letters, 2009, 94(21): 213506.

    [45] R. J. Dolleman, D. Davidovikj, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, “Graphene squeeze-film pressure sensor,” Nano Letters, 2016, 16(1): 568–571.

    [46] M. K. Andrews, G. C. Turner, P. D. Harris, and I. M. Harris, “A resonant pressure sensor based on a squeezed film of gas,” Sensors and Actuators A: Physical, 1993, 36(3): 219–226.

    [47] M. Bao and H. Yang, “Squeeze film air damping in MEMS,” Sensors and Actuators A: Physical, 2007, 136(1): 3–27.

    [48] S. S. Rao, “Vibration of continuous systems,” New Jersey: John Wiley & Sons, 2007.

    [49] G. Feng, “Theory and devices of resonant sensing,” Beijing: Tsinghua University Press, 2008.

    [50] Y. Oshidari, T. Hatakeyama, R. Kometani, S. Warisawa, and S. Ishihara, “High-quality factor graphene resonator fabrication using resist shrinkage-induced strain,” Applied Physics Express, 2012, 5(11): 117201.

    [51] M. Olfatnia, T. Xu, L. S. Ong, J. M. Miao, and Z. H. Wang, “Investigation of residual stress and its effects on the vibrational characteristics of piezoelectric-based multilayered micro-diaphragms,” Journal of Micromechanics and Microengineering, 2009, 20(1): 015007.

    [52] A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Advanced Materials, 2013, 25(46): 6719–6723.

    [53] C. Li, T. Lan, X. Yu, N. Bo, J. Dong, and S. Fan, “Room-temperature pressure-induced opticallyactuated Fabry-Perot nanomechanical resonator with multilayer graphene diaphragm in air,” Nanomaterials, 2017, 7(11): 366.

    [54] M. K. Kwak, “Vibration of circular plates in contact with water,” Journal of Applied Mechanics, 1991, 58(2): 480–483.

    Yujian LIU, Cheng LI, Shangchun FAN, Xuefeng SONG. Effect of PMMA Removal Methods on Opto-Mechanical Behaviors of Optical Fiber Resonant Sensor With Graphene Diaphragm[J]. Photonic Sensors, 2022, 12(2): 140
    Download Citation