• Photonics Research
  • Vol. 7, Issue 5, 543 (2019)
You-Zeng Hao1、2, Fu-Li Wang1、2, Min Tang1、2, Hai-Zhong Weng1、2, Yue-De Yang1、2, Jin-Long Xiao1、2, and Yong-Zhen Huang1、2、*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.7.000543 Cite this Article Set citation alerts
    You-Zeng Hao, Fu-Li Wang, Min Tang, Hai-Zhong Weng, Yue-De Yang, Jin-Long Xiao, Yong-Zhen Huang. Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity[J]. Photonics Research, 2019, 7(5): 543 Copy Citation Text show less
    References

    [1] L. A. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, C. Coldren. Tunable semiconductor lasers: a tutorial. J. Lightwave Technol., 22, 193-202(2004).

    [2] J. Buus, M. C. Amann, D. J. Blumenthal. Tunable Laser Diodes and Related Optical Sources(2005).

    [3] J. Buus, E. J. Murphy. Tunable lasers in optical networks. J. Lightwave Technol., 24, 5-11(2006).

    [4] H. Ishii, K. Kasaya, H. Oohashi. Spectral linewidth reduction in widely wavelength tunable DFB laser array. IEEE J. Sel. Top. Quantum Electron., 15, 514-520(2009).

    [5] H. Hatakeyama, K. Naniwae, K. Kudo, N. Suzuki, S. Sudo, S. Ae, Y. Muroya, K. Yashiki, K. Satoh, T. Morimoto, K. Mori, T. Sasaki. Wavelength-selectable microarray light sources for S-, C-, and L-band WDM systems. IEEE Photon. Technol. Lett., 15, 903-905(2003).

    [6] Y. Suematsu, S. Arai, K. Kishino. Dynamic single-mode semiconductor lasers with a distributed reflector. J. Lightwave Technol., 1, 161-176(1983).

    [7] B. Mason, J. Barton, G. A. Fish, L. A. Coldren, S. P. DenBaars. Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 12, 762-764(2000).

    [8] B. Mason, G. A. Fish, S. P. DenBaars, L. A. Coldren. Widely tunable sampled grating DBR laser with integrated electroabsorption modulator. IEEE Photon. Technol. Lett., 11, 638-640(1999).

    [9] N. Fujiwara, H. Ishii, H. Okamoto, Y. Kawaguchi, Y. Kondo, H. Oohashi. Suppression of thermal wavelength drift in super-structure grating distributed Bragg reflector (SSG-DBR) laser with thermal drift compensator. IEEE J. Sel. Top. Quantum Electron., 13, 1164-1169(2007).

    [10] H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni. Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers. IEEE J. Quantum Electron., 32, 433-441(1996).

    [11] A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. Reid, A. C. Carter. Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance. IEEE J. Sel. Top. Quantum Electron., 11, 149-156(2005).

    [12] L. A. Coldren, B. Miller, K. Iga, J. Rentschler. Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching. Appl. Phys. Lett., 38, 315-317(1981).

    [13] M. Kuznetsov, P. Verlangieri, A. Dentai. Frequency tuning characteristics and WDM channel access of the semiconductor three-branch Y3-lasers. IEEE Photon. Technol. Lett., 6, 157-160(1994).

    [14] S. Zhang, J. Meng, S. Guo, L. Wang, J. J. He. Simple and compact V-cavity semiconductor laser with 50 × 100 GHz wavelength tuning. Opt. Express, 21, 13564-13571(2013).

    [15] J. Jin, L. Wang, T. Yu, Y. Wang, J. J. He. Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio. Opt. Lett., 36, 4230-4232(2011).

    [16] S. Matsuo, T. Segawa. Microring-resonator-based widely tunable lasers. IEEE J. Sel. Top. Quantum Electron., 15, 545-554(2009).

    [17] T. Segawa, W. Kobayashi, T. Sato, S. Matsuo, R. Iga, R. Takahashi. A flat-output widely tunable laser based on parallel-ring resonator integrated with electroabsorption modulator. Opt. Express, 20, B485-B492(2012).

    [18] M. Nawrocka, Q. Y. Lu, W. H. Guo, A. Abdullaev, F. Bello, J. O’Callaghan, T. Cathcart, J. F. Donegan. Widely tunable six-section semiconductor laser based on etched slots. Opt. Express, 22, 18949-18957(2014).

    [19] Q. A. Chen, X. Ma, W. Sun, Y. Liu, G. H. Liu, G. Y. Zhao, Q. Y. Lu, W. H. Guo. Demonstration of multi-channel interference widely tunable semiconductor laser. IEEE Photon. Technol. Lett., 28, 2862-2865(2016).

    [20] Q. A. Chen, C. Jiang, X. Ma, Y. Liu, D. T. Yang, Q. Y. Lu, W. H. Guo. 1 × 8 MMI based multi-channel interference laser integrated with SOA through a 2-port multimode interference reflector. Opt. Express, 26, 19940-19949(2018).

    [21] X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, Z. X. Xiao. Mode coupling in hybrid square-rectangular lasers for single mode operation. Appl. Phys. Lett., 109, 071102(2016).

    [22] X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, Y. Du. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1500409(2017).

    [23] F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, J. L. Xiao. Relative intensity noise in high-speed hybrid square-rectangular lasers. Photon. Res., 6, 193-197(2018).

    [24] X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, F. L. Wang, M. Tang, J. L. Xiao, Y. Du. All-optical flip-flop based on hybrid square-rectangular bistable lasers. Opt. Lett., 42, 2291-2294(2017).

    [25] Y. Z. Huang, X. W. Ma, Y. D. Yang, J. L. Xiao, Y. Du. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci. China Inf. Sci., 61, 080401(2018).

    [26] F. L. Wang, Y. Z. Huang, J. Y. Han, Y. D. Yang, J. L. Xiao. All-optical switch and logic gates based on hybrid square-rectangular lasers. IEEE J. Sel. Top. Quantum Electron..

    [27] W. H. Guo, W. J. Li, Y. Z. Huang. Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation. IEEE Microw. Wireless Comp. Lett., 11, 223-225(2001).

    [28] S. Liu, W. Z. Sun, Y. J. Wang, X. Y. Yu, K. Xu, Y. Z. Huang, S. M. Xiao, Q. H. Song. End-fire injection of light into high-Q silicon microdisks. Optica, 5, 612-616(2018).

    [29] A. Taflove, S. C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method(2005).

    [30] Y. D. Yang, S. S. Sui, M. Tang, J. L. Xiao, Y. Du, A. W. Poon, Y. Z. Huang. Hybrid AlGaInAs/Si Fabry-Pérot lasers with near-total mode confinements. J. Semicond., 39, 084001(2018).

    [31] X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, Y. Du. Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor. Laser Photon. Rev., 7, 818-829(2013).

    [32] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson. Impact of photon lifetime on high-speed VCSEL performance. IEEE J. Sel. Top. Quantum Electron., 17, 1603-1613(2011).

    You-Zeng Hao, Fu-Li Wang, Min Tang, Hai-Zhong Weng, Yue-De Yang, Jin-Long Xiao, Yong-Zhen Huang. Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity[J]. Photonics Research, 2019, 7(5): 543
    Download Citation