• Photonics Research
  • Vol. 6, Issue 9, 830 (2018)
Xiaofeng Guan1, Jiawei Wang1, Yuzhao Zhang1, Bin Xu1、*, Zhengqian Luo1, Huiying Xu1, Zhiping Cai1, Xiaodong Xu2、5, Jian Zhang3, and Jun Xu4
Author Affiliations
  • 1Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
  • 2Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • 3Key Laboratory of Transparent Opto-functional Inorganic Materials, Chinese Academy of Sciences, Shanghai 201899, China
  • 4School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China
  • 5e-mail: xdxu79@mail.sic.ac.cn
  • show less
    DOI: 10.1364/PRJ.6.000830 Cite this Article Set citation alerts
    Xiaofeng Guan, Jiawei Wang, Yuzhao Zhang, Bin Xu, Zhengqian Luo, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, Jun Xu. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 830 Copy Citation Text show less
    References

    [1] R. Kaufmann, A. Hartmann, R. Hibst. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery. J. Dermatol. Surg. Oncol., 20, 112-118(1994).

    [2] M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, T. Bragagna. Mid-infrared Q-switched Er:YAG laser for medical applications. Laser Phys. Lett., 7, 498-504(2010).

    [3] T. Jensen, A. Diening, G. Huber, B. H. T. Chai. Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels. Opt. Lett., 21, 585-587(1996).

    [4] C. Labbe, J. L. Doualan, P. Camy, R. Moncorge, M. Thuau. The 2.8 μm laser properties of Er3+-doped CaF2 crystals. Opt. Commun., 209, 193-199(2002).

    [5] D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields. Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser. Opt. Lett., 24, 385-387(1999).

    [6] M. Robinson, D. P. Devor. Thermal switching of laser emission of Er3+ at 2.69  μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3. Appl. Phys. Lett., 10, 167-170(1967).

    [7] G. J. Kintz, R. Allen, L. Esterowitz. CW and pulsed 2.8  μm laser emission from diode-pumped Er3+:LiYF4 at room temperature. Appl. Phys. Lett., 50, 1553-1555(1987).

    [8] S. Wittwer, M. Pollnau, R. Spring, W. Luthy, H. P. Weber, R. A. McFarlane, C. Harder, H. P. Meier. Performance of a diode-pumped BaY2F8:Er3+ (7.5  at.%) laser at 2.8  μm. Opt. Commun., 132, 107-110(1996).

    [9] J. K. Chen, D. L. Sun, J. Q. Luo, H. L. Zhang, R. Q. Dou, J. Z. Xiao, Q. L. Zhang, S. T. Yin. Spectroscopic properties and diode end-pumped 2.79  μm laser performance of Er, Pr:GYSGG crystal. Opt. Express, 21, 23425-23432(2013).

    [10] Z. Y. You, Y. Wang, J. L. Xu, Z. J. Zhu, J. F. Li, H. Y. Wang, C. Y. Tu. Single-longitudinal-mode Er:GGG microchip laser operating at 2.7  μm. Opt. Lett., 40, 3846-3848(2015).

    [11] P. A. Loiko, K. V. Yumashev, R. Schödel, M. Peltz, C. Liebald, X. Mateos, B. Deppe, C. Kränkel. Thermo-optic properties of Yb:Lu2O3 single crystals. Appl. Phys. B, 120, 601-607(2015).

    [12] Z. Y. Zhou, X. Guan, X. Huang, B. Xu, H. Xu, Z. Cai, X. Xu, P. Liu, D. Li, J. Zhang, J. Xu. Tm3+-doped LuYO3 mixed sesquioxide ceramic laser: effective 2.05-μm source operating in continuous-wave and passive Q-switching regimes. Opt. Lett., 42, 3781-3784(2017).

    [13] L. Wang, H. T. Huang, D. Y. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, D. Y. Tang. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7  μm. Opt. Express, 22, 19495-19503(2014).

    [14] G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, K. Ueda. High-power self-mode-locked Yb:Y2O3 ceramic laser. Opt. Lett., 32, 2741-2743(2007).

    [15] A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. Yeom, F. Rotermund, V. Petrov, U. Griebner. 175  fs Tm:Lu2O3 laser at 2.07  μm mode-locked using single-walled carbon nanotubes. Opt. Express, 20, 5313-5318(2012).

    [16] Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, J. Wang. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range. Opt. Lett., 42, 547-550(2017).

    [17] Y. Jhon, J. Koo, B. Aansori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater., 29, 1702496(2017).

    [18] B. Xu, Y. Cheng, Y. Wang, Y. Huang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng, R. Moncorgé. Passively Q-switched Nd:YAlO3 nanosecond laser using MoS2 as saturable absorber. Opt. Express, 22, 28934-28940(2014).

    [19] L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, H. J. Zhang. Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm:CLNGG laser with MoS2 saturable absorber mirror. Photon. Res., 3, A47-A50(2015).

    [20] B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai, J. Weng. Topological insulator Bi2Se3 based Q-switched Nd:LiYF4 nanosecond laser at 1313  nm. Opt. Express, 23, 7674-7680(2015).

    [21] X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, J. Xu. Continuous-wave and CVD-graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7  μm. Appl. Opt., 57, 371-376(2018).

    [22] M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Krankel, G. Huber. Watt-level passively Q-switched Er:Lu2O3 laser at 2.84  μm using MoS2. Opt. Lett., 41, 540-543(2016).

    [23] C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, Y. Liu. Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett., 13, 105108(2016).

    [24] Z. Yan, T. Li, S. Zhao, K. Yang, D. Li, G. Li, S. Zhang, Z. Gao. MoTe2 saturable absorber for passively Q-switched Ho, Pr:LiLuF4 laser at 3  μm. Opt. Laser Technol., 100, 261-264(2018).

    [25] M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, C. Krankel. Continuous wave and ReS2 passively Q-switched Er:SrF2 laser at ∼3  μm. Opt. Lett., 43, 1726-1729(2018).

    [26] J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, Y. Liu. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber. Opt. Lett., 40, 3659-3662(2015).

    [27] Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, L. J. Qian. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm. Opt. Express, 23, 24713-24718(2015).

    [28] J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, L. Su. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express, 24, 30289-30295(2016).

    [29] J. J. Liu, X. W. Fan, J. Liu, W. W. Ma, J. Y. Wang, L. B. Su. Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser. Opt. Lett., 41, 4660-4663(2016).

    [30] H. T. Huang, L. Wang, D. Y. Shen, J. Zhang, D. Y. Tang. Self-pulsed nanosecond 2.7-μm solid-state erbium laser by cooperatively enhanced reabsorption. IEEE Photon. J., 7, 1504207(2015).

    [31] J. L. Xu, Y. Ji, Y. Wang, Z. You, H. Wang, C. Y. Tu. Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber. Opt. Express, 22, 6577-6582(2014).

    [32] H. R. Gutiérrez, N. P. López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. Urías, V. H. Crespi, H. Terrones, M. Terrones. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 13, 3447-3454(2013).

    [33] T. Sanamyan, J. Simmons, M. Dubinskii. Er3+-doped Y2O3 ceramic laser at ∼2.7  μm with direct diode pumping of the upper laser level. Laser Phys. Lett., 7, 206-209(2010).

    [34] H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, J. He. Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95  μm. Opt. Lett., 42, 699-702(2017).

    CLP Journals

    [1] Yingshuang Shan, Le Zhang, Tianyuan Zhou, Cen Shao, Lei Zhang, Yuelong Ma, Qing Yao, Zhigang Jiang, Farida A. Selim, Hao Chen. One-order-higher Cr4+ conversion efficiency in Cr4+:YAG transparent ceramics for a high-frequency passively Q-switched laser[J]. Photonics Research, 2019, 7(8): 933

    [2] Qian-Qian Hao, Meng-Yu Zong, Zhen Zhang, Hao Huang, Feng Zhang, Jie Liu, Dan-Hua Liu, Liang-Bi Su, Han Zhang. Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser [J]. Acta Physica Sinica, 2020, 69(18): 184205-1

    [3] Hongkun Nie, Feifei Wang, Junting Liu, Kejian Yang, Baitao Zhang, Jingliang He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091407

    Xiaofeng Guan, Jiawei Wang, Yuzhao Zhang, Bin Xu, Zhengqian Luo, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, Jun Xu. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers[J]. Photonics Research, 2018, 6(9): 830
    Download Citation