• Advanced Photonics
  • Vol. 5, Issue 3, 036003 (2023)
Ji-Ning Zhang1、2、3, Ran Yang1、2、3, Xinhui Li1、2、3、*, Chang-Wei Sun1、2、3, Yi-Chen Liu1、3、4, Ying Wei1、2、3, Jia-Chen Duan1、2、3, Zhenda Xie1、3、5, Yan-Xiao Gong1、2、3、6、*, and Shi-Ning Zhu1、2、3
Author Affiliations
  • 1Nanjing University, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2Nanjing University, School of Physics, Nanjing, China
  • 3Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 4Qingdao University of Technology, School of Science, Qingdao, China
  • 5Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • 6Hefei National Laboratory, Hefei, China
  • show less
    DOI: 10.1117/1.AP.5.3.036003 Cite this Article Set citation alerts
    Ji-Ning Zhang, Ran Yang, Xinhui Li, Chang-Wei Sun, Yi-Chen Liu, Ying Wei, Jia-Chen Duan, Zhenda Xie, Yan-Xiao Gong, Shi-Ning Zhu. Realization of a source-device-independent quantum random number generator secured by nonlocal dispersion cancellation[J]. Advanced Photonics, 2023, 5(3): 036003 Copy Citation Text show less
    References

    [1] X. Ma et al. Quantum random number generation. NPJ Quantum Inf., 2, 16021(2016).

    [2] M. Herrero-Collantes, J. C. Garcia-Escartin. Quantum random number generators. Rev. Mod. Phys., 89, 015004(2017).

    [3] B. G. Christensen et al. Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett., 111, 130406(2013).

    [4] Y. Liu et al. Device-independent quantum random-number generation. Nature, 562, 548-551(2018).

    [5] T. Paraïso et al. A photonic integrated quantum secure communication system. Nat. Photonics, 15, 850-856(2021).

    [6] F. Xu et al. Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express, 20, 12366-12377(2012).

    [7] B. Bai et al. 18.8 Gbps real-time quantum random number generator with a photonic integrated chip. Appl. Phys. Lett., 118, 264001(2021).

    [8] Y. Guo et al. 40 Gb/s quantum random number generation based on optically sampled amplified spontaneous emission. APL Photonics, 6, 066105(2021).

    [9] T. Gehring et al. Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information. Nat. Commun., 12, 605(2021).

    [10] Quantum random number generator-picoquant(2023).

    [11] Quantum random number source QuantumCTek-quantum secures every bit(2023).

    [12] S. Pironio et al. Random numbers certified by Bell’s theorem. Nature, 464, 1021-1024(2010).

    [13] W. Z. Liu et al. Device-independent randomness expansion against quantum side information. Nat. Phys., 17, 448-451(2021).

    [14] Z. Cao, H. Zhou, X. Ma. Loss-tolerant measurement-device-independent quantum random number generation. New J. Phys., 17, 125011(2015).

    [15] Y.-Q. Nie et al. Experimental measurement-device-independent quantum random-number generation. Phys. Rev. A, 94, 060301(2016).

    [16] P. Mironowicz et al. Quantum randomness protected against detection loophole attacks. Quantum Inf. Process., 20, 39(2021).

    [17] C. Wang et al. Provably-secure quantum randomness expansion with uncharacterised homodyne detection. Nat. Commun., 14, 316(2023).

    [18] Z. Cao et al. Source-independent quantum random number generation. Phys. Rev. X, 6, 011020(2016).

    [19] D. G. Marangon, G. Vallone, P. Villoresi. Source-device-independent ultrafast quantum random number generation. Phys. Rev. Lett., 118, 060503(2017).

    [20] Y.-H. Li et al. Quantum random number generation with uncharacterized laser and sunlight. NPJ Quantum Inf., 5, 97(2019).

    [21] D. Drahi et al. Certified quantum random numbers from untrusted light. Phys. Rev. X, 10, 041048(2020).

    [22] X. Lin et al. Security analysis and improvement of source independent quantum random number generators with imperfect devices. NPJ Quantum Inf., 6, 100(2020).

    [23] J. Cheng et al. Mutually testing source-device-independent quantum random number generator. Photonics Res., 10, 646-652(2022).

    [24] X. Lin et al. Certified randomness from untrusted sources and uncharacterized measurements. Phys. Rev. Lett., 129, 050506(2022).

    [25] T. Lunghi et al. Self-testing quantum random number generator. Phys. Rev. Lett., 114, 150501(2015).

    [26] T. Van Himbeeck et al. Semi-device-independent framework based on natural physical assumptions. Quantum, 1, 33(2017).

    [27] D. Rusca et al. Self-testing quantum random-number generator based on an energy bound. Phys. Rev. A, 100, 062338(2019).

    [28] H. Tebyanian et al. Semi-device independent randomness generation based on quantum state’s indistinguishability. Quantum Sci. Technol., 6, 045026(2021).

    [29] P. R. Smith et al. Simple source device-independent continuous-variable quantum random number generator. Phys. Rev. A, 99, 062326(2019).

    [30] T. Michel et al. Real-time source-independent quantum random-number generator with squeezed states. Phys. Rev. Appl., 12, 034017(2019).

    [31] M. Avesani et al. Source-device-independent heterodyne-based quantum random number generator at 17 Gbps. Nat. Commun., 9, 5365(2018).

    [32] N. J. Beaudry, T. Moroder, N. Lütkenhaus. Squashing models for optical measurements in quantum communication. Phys. Rev. Lett., 101, 093601(2008).

    [33] Y.-Q. Nie et al. Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett., 104, 051110(2014).

    [34] F. Xu, J. H. Shapiro, F. N. C. Wong. Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring. Optica, 3, 1266-1269(2016).

    [35] J. D. Franson. Nonlocal cancellation of dispersion. Phys. Rev. A, 45, 3126-3132(1992).

    [36] J. Mower et al. High-dimensional quantum key distribution using dispersive optics. Phys. Rev. A, 87, 062322(2013).

    [37] C. Lee et al. Entanglement-based quantum communication secured by nonlocal dispersion cancellation. Phys. Rev. A, 90, 062331(2014).

    [38] M. Y. Niu et al. Finite-key analysis for time-energy high-dimensional quantum key distribution. Phys. Rev. A, 94, 052323(2016).

    [39] J. E. Bourassa, H.-K. Lo. Entropic uncertainty relations and the measurement range problem, with consequences for high-dimensional quantum key distribution. J. Opt. Soc. Am. B, 36, 65-76(2019).

    [40] R. Konig, R. Renner, C. Schaffner. The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory, 55, 4337-4347(2009).

    [41] G. Vallone et al. Quantum randomness certified by the uncertainty principle. Phys. Rev. A, 90, 052327(2014).

    [42] P. J. Coles et al. Entropic uncertainty relations and their applications. Rev. Mod. Phys., 89, 015002(2017).

    [43] F. Furrer et al. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett., 109, 100502(2012).

    [44] Erf.

    [45] J. Münzberg et al. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica, 5, 658-665(2018).

    [46] S. Mancini et al. Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett., 88, 120401(2002).

    [47] L. K. Shalm et al. Three-photon energy–time entanglement. Nat. Phys., 9, 19-22(2013).

    [48] Z. Zhang et al. Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. Phys. Rev. Lett., 112, 120506(2014).

    [49] T. Gehring et al. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun., 6, 8795(2015).

    Ji-Ning Zhang, Ran Yang, Xinhui Li, Chang-Wei Sun, Yi-Chen Liu, Ying Wei, Jia-Chen Duan, Zhenda Xie, Yan-Xiao Gong, Shi-Ning Zhu. Realization of a source-device-independent quantum random number generator secured by nonlocal dispersion cancellation[J]. Advanced Photonics, 2023, 5(3): 036003
    Download Citation