• Photonics Research
  • Vol. 10, Issue 2, 587 (2022)
Xianhe Liu1、2、†, Yi Sun1、†, Yakshita Malhotra1, Ayush Pandey1, Ping Wang1, Yuanpeng Wu1, Kai Sun3, and Zetian Mi1、*
Author Affiliations
  • 1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
  • 3Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
  • show less
    DOI: 10.1364/PRJ.443165 Cite this Article Set citation alerts
    Xianhe Liu, Yi Sun, Yakshita Malhotra, Ayush Pandey, Ping Wang, Yuanpeng Wu, Kai Sun, Zetian Mi. N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs[J]. Photonics Research, 2022, 10(2): 587 Copy Citation Text show less
    References

    [1] A. I. Alhassan, R. M. Farrell, B. Saifaddin, A. Mughal, F. Wu, S. P. DenBaars, S. Nakamura, J. S. Speck. High luminous efficacy green light-emitting diodes with AlGaN cap layer. Opt. Express, 24, 17868-17873(2016).

    [2] J. Bai, Y. Cai, P. Feng, P. Fletcher, C. Zhu, Y. Tian, T. Wang. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width. ACS Nano, 14, 6906-6911(2020).

    [3] J.-X. Guo, J. Ding, C.-L. Mo, C.-D. Zheng, S. Pan, F.-Y. Jiang. Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate. Chin. Phys. B, 29, 047303(2020).

    [4] R. Hashimoto, J. Hwang, S. Saito, S. Nunoue. High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrates. Phys. Status Solidi C, 10, 1529-1532(2013).

    [5] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, S. P. DenBaars. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express, 10, 032101(2017).

    [6] S. Kimura, H. Yoshida, K. Uesugi, T. Ito, A. Okada, S. Nunoue. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers. J. Appl. Phys., 120, 113104(2016).

    [7] P. P. Li, Y. B. Zhao, H. J. Li, J. M. Che, Z. H. Zhang, Z. C. Li, Y. Y. Zhang, L. C. Wang, M. Liang, X. Y. Yi, G. H. Wang. Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD. Opt. Express, 26, 33108-33115(2018).

    [8] C. D. Pynn, S. J. Kowsz, S. H. Oh, H. Gardner, R. M. Farrell, S. Nakamura, J. S. Speck, S. P. DenBaars. Green semipolar III-nitride light-emitting diodes grown by limited area epitaxy. Appl. Phys. Lett., 109, 041107(2016).

    [9] H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, S. Nakamura. Optical properties of yellow light-emitting diodes grown on semipolar (112¯2) bulk GaN substrates. Appl. Phys. Lett., 92, 221110(2008).

    [10] J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, S. P. DenBaars. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl. Phys. Lett., 116, 071102(2020).

    [11] J. J. Wierer, A. David, M. M. Megens. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics, 3, 163-169(2009).

    [12] S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, S. Nakamura. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (202¯1) GaN substrates. Appl. Phys. Express, 3, 122102(2010).

    [13] B. P. Yonkee, E. C. Young, S. P. DenBaars, S. Nakamura, J. S. Speck. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction. Appl. Phys. Lett., 109, 191104(2016).

    [14] T. Shioda, H. Yoshida, K. Tachibana, N. Sugiyama, S. Nunoue. Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate. Phys. Status Solidi A, 209, 473-476(2012).

    [15] C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, F. M. Steranka, M. R. Krames. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett., 106, 031101(2015).

    [16] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai. White light emitting diodes with super-high luminous efficacy. J. Phys. D, 43, 354002(2010).

    [17] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai. Ultra-high efficiency white light emitting diodes. Jpn. J. Appl. Phys., 45, L1084-L1086(2006).

    [18] Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, T. Mukai. Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage. Jpn. J. Appl. Phys., 46, L963-L965(2007).

    [19] R. T. Ley, J. M. Smith, M. S. Wong, T. Margalith, S. Nakamura, S. P. DenBaars, M. J. Gordon. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl. Phys. Lett., 116, 251104(2020).

    [20] H. X. Jiang, J. Y. Lin. Nitride micro-LEDs and beyond - a decade progress review. Opt. Express, 21, A475-A484(2013).

    [21] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. Huang Chen, W. Guo, H.-C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).

    [22] H. Xu, J. Zhang, K. M. Davitt, Y. K. Song, A. V. Nurmikko. Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection. J. Phys. D, 41, 094013(2008).

    [23] Y.-H. Ra, R. Wang, S. Y. Woo, M. Djavid, S. M. Sadaf, J. Lee, G. A. Botton, Z. Mi. Full-color single nanowire pixels for projection displays. Nano Lett., 16, 4608-4615(2016).

    [24] Z. Liu, W. C. Chong, K. M. Wong, K. M. Lau. GaN-based LED micro-displays for wearable applications. Microelectron Eng., 148, 98-103(2015).

    [25] D. Peng, K. Zhang, V. S.-D. Chao, W. Mo, K. M. Lau, Z. Liu. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) micro-displays by CoB. J. Display Technol., 12, 742-746(2016).

    [26] X. Zhang, P. Li, X. Zou, J. Jiang, S. H. Yuen, C. W. Tang, K. M. Lau. Active matrix monolithic LED micro-display using GaN-on-Si epilayers. IEEE Photon. Technol. Lett., 31, 865-868(2019).

    [27] N. McAlinden, Y. Cheng, R. Scharf, E. Xie, E. Gu, C. Reiche, R. Sharma, P. Tathireddy, P. Tathireddy, L. Rieth, S. Blair, K. Mathieson. Multisite microLED optrode array for neural interfacing. Neurophotonics, 6, 035010(2019).

    [28] D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, D. O. Brien. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photon. Technol. Lett., 26, 637-640(2014).

    [29] M. S. Wong, S. Nakamura, S. P. DenBaars. Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol., 9(2020).

    [30] H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. Chow, P. Li, J. Kearns, A. A. Taylor, P. De Mierry, Z. Hassan, S. Nakamura, S. P. DenBaars. Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template. Opt. Express, 27, 24154-24160(2019).

    [31] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, F. Templier. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin., 191, 112-116(2017).

    [32] M. Minami, S. Tomiya, K. Ishikawa, R. Matsumoto, S. Chen, M. Fukasawa, F. Uesawa, M. Sekine, M. Hori, T. Tatsumi. Analysis of GaN damage induced by Cl2/SiCl4/Ar plasma. Jpn. J. Appl. Phys., 50, 08JE03(2011).

    [33] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren. Inductively coupled plasma-induced etch damage of GaN p-n junctions. J. Vac. Sci. Technol. A, 18, 1139-1143(2000).

    [34] H. P. T. Nguyen, M. Djavid, K. Cui, Z. Mi. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology, 23, 194012(2012).

    [35] K. Kishino, S. Ishizawa. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology, 26, 225602(2015).

    [36] M. Mandl, X. Wang, T. Schimpke, C. Kölper, M. Binder, J. Ledig, A. Waag, X. Kong, A. Trampert, F. Bertram, J. Christen, F. Barbagini, E. Calleja, M. Strassburg. Group III nitride core–shell nano- and microrods for optoelectronic applications. Phys. Status Solidi RRL, 7, 800-814(2013).

    [37] K. Kishino, N. Sakakibara, K. Narita, T. Oto. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express, 13, 014003(2019).

    [38] H. Sekiguchi, K. Kishino, A. Kikuchi. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett., 96, 231104(2010).

    [39] H. P. T. Nguyen, S. Zhang, A. T. Connie, M. G. Kibria, Q. Wang, I. Shih, Z. Mi. Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett., 13, 5437-5442(2013).

    [40] M. Pristovsek, Y. Han, T. Zhu, M. Frentrup, M. J. Kappers, C. J. Humphreys, G. Kozlowski, P. Maaskant, B. Corbett. Low defect large area semi-polar (112¯2) GaN grown on patterned (113) silicon. Phys. Status Solidi B, 252, 1104-1108(2015).

    [41] T. Wang. Topical review: development of overgrown semi-polar GaN for high efficiency green/yellow emission. Semicond. Sci. Technol., 31, 093003(2016).

    [42] S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, Z. Mi. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Lett., 15, 6696-6701(2015).

    [43] X. Liu, Y. Wu, Y. Malhotra, Y. Sun, Z. Mi. Micrometer scale InGaN green light emitting diodes with ultra-stable operation. Appl. Phys. Lett., 117, 011104(2020).

    [44] K. Kishino, K. Yamano. Green-light nanocolumn light emitting diodes with triangular-lattice uniform arrays of InGaN-based nanocolumns. IEEE J. Quantum Electron., 50, 538-547(2014).

    [45] A. Uedono, K. Shojiki, K. Uesugi, S. F. Chichibu, S. Ishibashi, M. Dickmann, W. Egger, C. Hugenschmidt, H. Miyake. Annealing behaviors of vacancy-type defects in AlN deposited by radio-frequency sputtering and metalorganic vapor phase epitaxy studied using monoenergetic positron beams. J. Appl. Phys., 128, 085704(2020).

    [46] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, S. Rajan. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett., 100, 111118(2012).

    [47] N. H. Tran, B. H. Le, S. Zhao, Z. Mi. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures. Appl. Phys. Lett., 110, 032102(2017).

    [48] Y. Wu, D. A. Laleyan, Z. Deng, C. Ahn, A. F. Aiello, A. Pandey, X. Liu, P. Wang, K. Sun, E. Ahmadi, Y. Sun, M. Kira, P. K. Bhattacharya, E. Kioupakis, Z. Mi. Controlling defect formation of nanoscale AlN: toward efficient current conduction of ultrawide-bandgap semiconductors. Adv. Electron. Mater., 6, 2000337(2020).

    [49] M. Brubaker, K. Genter, J. Weber, B. Spann, A. Roshko, P. Blanchard, T. Harvey, K. Bertness. Core-shell p-i-n GaN nanowire LEDs by N-polar selective area growth. Proc. SPIE, 10725, 1072502(2018).

    [50] M. D. Brubaker, K. L. Genter, A. Roshko, P. T. Blanchard, B. T. Spann, T. E. Harvey, K. A. Bertness. UV LEDs based on p–i–n core–shell AlGaN/GaN nanowire heterostructures grown by N-polar selective area epitaxy. Nanotechnology, 30, 234001(2019).

    [51] M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, K. A. Bertness. Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy. Cryst. Growth Des., 16, 596-604(2016).

    [52] Ž. Gačević, D. G. Sánchez, E. Calleja. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy. Nano Lett., 15, 1117-1121(2015).

    [53] K. Kishino, H. Sekiguchi, A. Kikuchi. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth, 311, 2063-2068(2009).

    [54] X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, Z. Mi. Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics. Opt. Express, 25, 30494-30502(2017).

    [55] H. Sekiguchi, K. Kishino, A. Kikuchi. Ti-mask selective-area growth of GaN by RF-plasma-assisted molecular-beam epitaxy for fabricating regularly arranged InGaN/GaN Nanocolumns. Appl. Phys. Express, 1, 124002(2008).

    [56] H. P. T. Nguyen, M. Djavid, S. Y. Woo, X. Liu, A. T. Connie, S. Sadaf, Q. Wang, G. A. Botton, I. Shih, Z. Mi. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers. Sci. Rep., 5, 7744(2015).

    [57] K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, B. Daudin. Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111). Phys. Rev. B, 84, 245302(2011).

    [58] H. P. T. Nguyen, K. Cui, S. Zhang, S. Fathololoumi, Z. Mi. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology, 22, 445202(2011).

    [59] S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, G. A. Botton. Atomic ordering in InGaN alloys within nanowire heterostructures. Nano Lett., 15, 6413-6418(2015).

    [60] X. Liu, Y. Sun, Y. Malhotra, A. Pandey, Y. Wu, K. Sun, Z. Mi. High efficiency InGaN nanowire tunnel junction green micro-LEDs. Appl. Phys. Lett., 119, 141110(2021).

    [61] C. Du, Z. Ma, J. Zhou, T. Lu, Y. Jiang, P. Zuo, H. Jia, H. Chen. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption. Appl. Phys. Lett., 105, 071108(2014).

    [62] S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, Z. Mi. Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett., 15, 7801-7807(2015).

    [63] S. A. A. Muyeed, W. Sun, M. R. Peart, R. M. Lentz, X. Wei, D. Borovac, R. Song, N. Tansu, J. J. Wierer. Recombination rates in green-yellow InGaN-based multiple quantum wells with AlGaN interlayers. J. Appl. Phys., 126, 213106(2019).

    [64] T. H. Ngo, B. Gil, B. Damilano, K. Lekhal, P. De Mierry. Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction. Superlattices Microstruct., 103, 245-251(2017).

    [65] C. Zhao, T. K. Ng, C.-C. Tseng, J. Li, Y. Shi, N. Wei, D. Zhang, G. B. Consiglio, A. Prabaswara, A. A. Alhamoud, A. M. Albadri, A. Y. Alyamani, X. X. Zhang, L.-J. Li, B. S. Ooi. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv., 7, 26665-26672(2017).

    [66] S. Deshpande, P. Bhattacharya. An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K. Appl. Phys. Lett., 103, 241117(2013).

    [67] S. Jahangir, A. Banerjee, P. Bhattacharya. Carrier lifetimes in green emitting InGaN/GaN disks-in-nanowire and characteristics of green light emitting diodes. Phys. Status Solidi C, 10, 812-815(2013).

    [68] W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett., 10, 3355-3359(2010).

    [69] A. G. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, R. C. Myers. Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small, 11, 5402-5408(2015).

    [70] H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, Z. Mi. p-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett., 11, 1919-1924(2011).

    [71] M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, I. S. Roqan. High-efficiency InGaN/GaN quantum well-based vertical light-emitting diodes fabricated on β-Ga2O3 substrate. ACS Appl. Mater. Interfaces, 9, 34057-34063(2017).

    [72] F. Olivier, A. Daami, C. Licitra, F. Templier. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett., 111, 022104(2017).

    Xianhe Liu, Yi Sun, Yakshita Malhotra, Ayush Pandey, Ping Wang, Yuanpeng Wu, Kai Sun, Zetian Mi. N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs[J]. Photonics Research, 2022, 10(2): 587
    Download Citation