
- Photonics Research
- Vol. 10, Issue 2, 587 (2022)
Abstract
1. INTRODUCTION
The microelectronic industry has benefited tremendously from the miniaturization of transistors, e.g., MOSFETs, down to dimensions below 10–100 nm scale. Shrinking the sizes of optoelectronic devices, e.g., light-emitting diodes (LEDs) and laser diodes to micro- and nanoscale, however, severely deteriorates the device performance. For example, while external quantum efficiency (EQE) in the range of 50%–80% can be commonly measured under current densities of
Figure 1.Variations of peak EQE of InGaN/GaN LEDs versus lateral dimension for some reported devices in the literature, showing the significantly reduced efficiency with decreasing device size [1
Alternatively, LEDs can be fabricated utilizing nanostructures synthesized by the bottom-up approach. Due to the efficient surface strain relaxation, such nanostructures are largely free of dislocations and exhibit epitaxially smooth surface [34–36]. In this context, significant attention has been paid to InGaN nanowire-based devices in the past decade. Full-color emission has been demonstrated for InGaN nanowires grown in a single epitaxy step by controlling their size and spacing, thereby enabling transfer-free monolithic full-color LED arrays [23,37,38]. Quantum dot-in-nanowires, core-shell heterostructures, and tunnel junctions have also been developed to reduce nonradiative surface recombination and to significantly enhance charge carrier injection efficiency [39–42]. To date, however, these studies have been largely focused on Ga-polar structures, which are often characterized by the presence of pyramid-like surface morphology when grown along the
Recent advances have shown that N-polar structures can offer significant performance advantages compared to their Ga-polar counterparts. N-polar III-nitrides can be grown at relatively higher temperatures, thereby significantly reducing the formation of point defects, which is critical for achieving high-efficiency emission in the deep visible [45]. N-polar InGaN nanowires grown along the
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
In this context, we report on the demonstration of high-efficiency N-polar InGaN nanowire submicrometer LEDs operating at the green wavelength. N-polar InGaN nanowires with the incorporation of multiple InGaN quantum disks were grown on a N-polar GaN template on sapphire substrate. A maximum EQE
2. GROWTH AND FABRICATION
The N-polar GaN templates were grown on sapphire substrate using a Veeco GENxplor plasma-assisted molecular beam epitaxial (PAMBE) system. Sufficient nitridation of the substrate was first performed
To perform selective area epitaxy (SAE) on N-polar GaN templates, a patterning process is adopted, schematically shown in Figs. 2(a) and 2(b) [52–55]. A 10 nm thick Ti layer was first deposited by electron beam evaporation, which was followed by electron beam lithography and dry etching of Ti. The resist was then removed, and the patterns were thoroughly cleaned for growth. The schematic of the patterned substrate with periodic array of openings in the Ti layer is illustrated in Fig. 2(b). The growth was performed in a Veeco Gen 930 PAMBE system. Nitridation of the substrate with patterned Ti mask was first performed
Figure 2.(a) Schematic of a N-polar GaN template grown on sapphire substrate. (b) Schematic of a patterned N-polar n-GaN template on sapphire using Ti mask. (c) Schematic of InGaN/GaN nanowires formed by selective area epitaxy. Inset: schematic of the LED heterostructure. (d) Scanning electron microscopy (SEM) image of the nanowires. (e) Photoluminescence spectra measured from InGaN nanowires with various indium compositions in the quantum disk active region.
The fabrication of micro LEDs started with surface passivation of the nanowires. 50 nm
3. RESULTS AND DISCUSSION
A. Material Characterizations
The N-polar nanowires formed in this process exhibit highly uniform dimension and morphology, shown in Fig. 2(d), which is in direct contrast to the uncontrolled properties for previously reported N-polar nanowires by spontaneous growth process [34,57,58]. The nanowires formed by SAE maintain the same polarity as the GaN template. Unlike Ga-polar nanowires, N-polar nanowires have a flat morphology on the top, which is the polar
The structural properties were characterized for a calibration nanowire sample exhibiting green emission using scanning transmission electron microscopy (STEM). Shown in Fig. 3(a) is a high angle annular dark field (HAADF) image of one nanowire. The nanowire clearly exhibits a flat morphology due to the N-polarity. The relatively light gray layers are the InGaN quantum disks, and the relatively dark gray layers correspond to the AlGaN barriers. A high-magnification image around the active region is shown in Fig. 3(b).
Figure 3.(a) STEM-HAADF image of a single InGaN/AlGaN nanowire with six stacks of InGaN quantum disks exhibiting green emission. (b) High magnification of the region around the quantum disks. (c) Elemental mapping of In and Al in the region denoted by the blue box in (b). (d) The profile of Al distribution along the red dashed line in (b). (e) High-magnification STEM annular bright-field image showing the atomic stack order, where green circles represent Ga and red circles represent N.
To reveal the structure of the active region, energy-dispersive X-ray spectroscopy was performed for the distribution of In and Al in the region in the blue box in Fig. 3(b). The top panel in Fig. 3(c) confirms the formation of vertically stacked InGaN quantum disks. Unlike conventional InGaN quantum wells, which commonly have disorders, such InGaN quantum disks in nanowires exhibited extensive atomic ordering [59]. Comparing with the distribution of Al in the bottom panel of Fig. 3(c), there is clearly spatial overlap between the distributions of In and Al. The thickness of each In-containing layer is designed to be
B. Current-Voltage Characteristics and Emission Efficiency
The current-voltage (I-V) characteristics are shown in Fig. 4(a). A turn-on voltage of
Figure 4.(a)
The output power and EQE were measured by directly placing the device on a Si detector. A Keithley 2400 was used as the sourcemeter for current injection. A Si detector (Newport 818-ST2-UV/DB) together with a power meter (Newport 1919-R) was used for the output power measurement. During the measurements, the device was placed on top of the Si detector, and light emitted from the backside of the sapphire substrate was collected and recorded. Shown in Fig. 5(a), the output power showed a nearly linear increase with injection current. Variations of the EQE with current are shown in Fig. 5(b). The measured EQE showed a rapid increase with injection current and reached a peak value of
Figure 5.Variations of (a) output power and (b) EQE with current density.
C. Analysis on the Light Emission Efficiency
The ABC model with an additional term
Figure 6.Left axis: IQE (solid blue curve) derived based on the ABC model analysis. The estimated IQE (blue circles) based on the measured EQE divided by the light extraction efficiency is also shown for comparison. Right axis: estimated contribution of
Based on these studies, we have further analyzed the performance limit for such N-polar InGaN nanowire micro LEDs. For a well-designed device, it is expected that the efficiency droop will be predominantly determined by Auger recombination. For an Auger coefficient
4. CONCLUSION
In conclusion, we have demonstrated that N-polar InGaN nanowires can enable high-efficiency submicrometer-scale LEDs that were not previously possible. The peak IQE is estimated to be
Acknowledgment
Acknowledgment. The authors are thankful for the discussions with Dr. David Laleyan, Mr. Matthew Stevenson, and Dr. Seth Coe-Sullivan from NS Nanotech, Inc.
References
[1] A. I. Alhassan, R. M. Farrell, B. Saifaddin, A. Mughal, F. Wu, S. P. DenBaars, S. Nakamura, J. S. Speck. High luminous efficacy green light-emitting diodes with AlGaN cap layer. Opt. Express, 24, 17868-17873(2016).
[2] J. Bai, Y. Cai, P. Feng, P. Fletcher, C. Zhu, Y. Tian, T. Wang. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width. ACS Nano, 14, 6906-6911(2020).
[3] J.-X. Guo, J. Ding, C.-L. Mo, C.-D. Zheng, S. Pan, F.-Y. Jiang. Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate. Chin. Phys. B, 29, 047303(2020).
[4] R. Hashimoto, J. Hwang, S. Saito, S. Nunoue. High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrates. Phys. Status Solidi C, 10, 1529-1532(2013).
[5] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, S. P. DenBaars. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express, 10, 032101(2017).
[6] S. Kimura, H. Yoshida, K. Uesugi, T. Ito, A. Okada, S. Nunoue. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers. J. Appl. Phys., 120, 113104(2016).
[7] P. P. Li, Y. B. Zhao, H. J. Li, J. M. Che, Z. H. Zhang, Z. C. Li, Y. Y. Zhang, L. C. Wang, M. Liang, X. Y. Yi, G. H. Wang. Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD. Opt. Express, 26, 33108-33115(2018).
[8] C. D. Pynn, S. J. Kowsz, S. H. Oh, H. Gardner, R. M. Farrell, S. Nakamura, J. S. Speck, S. P. DenBaars. Green semipolar III-nitride light-emitting diodes grown by limited area epitaxy. Appl. Phys. Lett., 109, 041107(2016).
[9] H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, S. Nakamura. Optical properties of yellow light-emitting diodes grown on semipolar (
[10] J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, S. P. DenBaars. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Appl. Phys. Lett., 116, 071102(2020).
[11] J. J. Wierer, A. David, M. M. Megens. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics, 3, 163-169(2009).
[12] S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, S. Nakamura. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (
[13] B. P. Yonkee, E. C. Young, S. P. DenBaars, S. Nakamura, J. S. Speck. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction. Appl. Phys. Lett., 109, 191104(2016).
[14] T. Shioda, H. Yoshida, K. Tachibana, N. Sugiyama, S. Nunoue. Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate. Phys. Status Solidi A, 209, 473-476(2012).
[15] C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, F. M. Steranka, M. R. Krames. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett., 106, 031101(2015).
[16] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai. White light emitting diodes with super-high luminous efficacy. J. Phys. D, 43, 354002(2010).
[17] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai. Ultra-high efficiency white light emitting diodes. Jpn. J. Appl. Phys., 45, L1084-L1086(2006).
[18] Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, T. Mukai. Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage. Jpn. J. Appl. Phys., 46, L963-L965(2007).
[19] R. T. Ley, J. M. Smith, M. S. Wong, T. Margalith, S. Nakamura, S. P. DenBaars, M. J. Gordon. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl. Phys. Lett., 116, 251104(2020).
[20] H. X. Jiang, J. Y. Lin. Nitride micro-LEDs and beyond - a decade progress review. Opt. Express, 21, A475-A484(2013).
[21] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. Huang Chen, W. Guo, H.-C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).
[22] H. Xu, J. Zhang, K. M. Davitt, Y. K. Song, A. V. Nurmikko. Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection. J. Phys. D, 41, 094013(2008).
[23] Y.-H. Ra, R. Wang, S. Y. Woo, M. Djavid, S. M. Sadaf, J. Lee, G. A. Botton, Z. Mi. Full-color single nanowire pixels for projection displays. Nano Lett., 16, 4608-4615(2016).
[24] Z. Liu, W. C. Chong, K. M. Wong, K. M. Lau. GaN-based LED micro-displays for wearable applications. Microelectron Eng., 148, 98-103(2015).
[25] D. Peng, K. Zhang, V. S.-D. Chao, W. Mo, K. M. Lau, Z. Liu. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) micro-displays by CoB. J. Display Technol., 12, 742-746(2016).
[26] X. Zhang, P. Li, X. Zou, J. Jiang, S. H. Yuen, C. W. Tang, K. M. Lau. Active matrix monolithic LED micro-display using GaN-on-Si epilayers. IEEE Photon. Technol. Lett., 31, 865-868(2019).
[27] N. McAlinden, Y. Cheng, R. Scharf, E. Xie, E. Gu, C. Reiche, R. Sharma, P. Tathireddy, P. Tathireddy, L. Rieth, S. Blair, K. Mathieson. Multisite microLED optrode array for neural interfacing. Neurophotonics, 6, 035010(2019).
[28] D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, D. O. Brien. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photon. Technol. Lett., 26, 637-640(2014).
[29] M. S. Wong, S. Nakamura, S. P. DenBaars. Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol., 9(2020).
[30] H. Li, M. S. Wong, M. Khoury, B. Bonef, H. Zhang, Y. Chow, P. Li, J. Kearns, A. A. Taylor, P. De Mierry, Z. Hassan, S. Nakamura, S. P. DenBaars. Study of efficient semipolar (11-22) InGaN green micro-light-emitting diodes on high-quality (11-22) GaN/sapphire template. Opt. Express, 27, 24154-24160(2019).
[31] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, F. Templier. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin., 191, 112-116(2017).
[32] M. Minami, S. Tomiya, K. Ishikawa, R. Matsumoto, S. Chen, M. Fukasawa, F. Uesawa, M. Sekine, M. Hori, T. Tatsumi. Analysis of GaN damage induced by Cl2/SiCl4/Ar plasma. Jpn. J. Appl. Phys., 50, 08JE03(2011).
[33] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren. Inductively coupled plasma-induced etch damage of GaN p-n junctions. J. Vac. Sci. Technol. A, 18, 1139-1143(2000).
[34] H. P. T. Nguyen, M. Djavid, K. Cui, Z. Mi. Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon. Nanotechnology, 23, 194012(2012).
[35] K. Kishino, S. Ishizawa. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology, 26, 225602(2015).
[36] M. Mandl, X. Wang, T. Schimpke, C. Kölper, M. Binder, J. Ledig, A. Waag, X. Kong, A. Trampert, F. Bertram, J. Christen, F. Barbagini, E. Calleja, M. Strassburg. Group III nitride core–shell nano- and microrods for optoelectronic applications. Phys. Status Solidi RRL, 7, 800-814(2013).
[37] K. Kishino, N. Sakakibara, K. Narita, T. Oto. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express, 13, 014003(2019).
[38] H. Sekiguchi, K. Kishino, A. Kikuchi. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett., 96, 231104(2010).
[39] H. P. T. Nguyen, S. Zhang, A. T. Connie, M. G. Kibria, Q. Wang, I. Shih, Z. Mi. Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett., 13, 5437-5442(2013).
[40] M. Pristovsek, Y. Han, T. Zhu, M. Frentrup, M. J. Kappers, C. J. Humphreys, G. Kozlowski, P. Maaskant, B. Corbett. Low defect large area semi-polar (
[41] T. Wang. Topical review: development of overgrown semi-polar GaN for high efficiency green/yellow emission. Semicond. Sci. Technol., 31, 093003(2016).
[42] S. M. Sadaf, Y. H. Ra, H. P. T. Nguyen, M. Djavid, Z. Mi. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Lett., 15, 6696-6701(2015).
[43] X. Liu, Y. Wu, Y. Malhotra, Y. Sun, Z. Mi. Micrometer scale InGaN green light emitting diodes with ultra-stable operation. Appl. Phys. Lett., 117, 011104(2020).
[44] K. Kishino, K. Yamano. Green-light nanocolumn light emitting diodes with triangular-lattice uniform arrays of InGaN-based nanocolumns. IEEE J. Quantum Electron., 50, 538-547(2014).
[45] A. Uedono, K. Shojiki, K. Uesugi, S. F. Chichibu, S. Ishibashi, M. Dickmann, W. Egger, C. Hugenschmidt, H. Miyake. Annealing behaviors of vacancy-type defects in AlN deposited by radio-frequency sputtering and metalorganic vapor phase epitaxy studied using monoenergetic positron beams. J. Appl. Phys., 128, 085704(2020).
[46] F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, S. Rajan. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Appl. Phys. Lett., 100, 111118(2012).
[47] N. H. Tran, B. H. Le, S. Zhao, Z. Mi. On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures. Appl. Phys. Lett., 110, 032102(2017).
[48] Y. Wu, D. A. Laleyan, Z. Deng, C. Ahn, A. F. Aiello, A. Pandey, X. Liu, P. Wang, K. Sun, E. Ahmadi, Y. Sun, M. Kira, P. K. Bhattacharya, E. Kioupakis, Z. Mi. Controlling defect formation of nanoscale AlN: toward efficient current conduction of ultrawide-bandgap semiconductors. Adv. Electron. Mater., 6, 2000337(2020).
[49] M. Brubaker, K. Genter, J. Weber, B. Spann, A. Roshko, P. Blanchard, T. Harvey, K. Bertness. Core-shell p-i-n GaN nanowire LEDs by N-polar selective area growth. Proc. SPIE, 10725, 1072502(2018).
[50] M. D. Brubaker, K. L. Genter, A. Roshko, P. T. Blanchard, B. T. Spann, T. E. Harvey, K. A. Bertness. UV LEDs based on p–i–n core–shell AlGaN/GaN nanowire heterostructures grown by N-polar selective area epitaxy. Nanotechnology, 30, 234001(2019).
[51] M. D. Brubaker, S. M. Duff, T. E. Harvey, P. T. Blanchard, A. Roshko, A. W. Sanders, N. A. Sanford, K. A. Bertness. Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy. Cryst. Growth Des., 16, 596-604(2016).
[52] Ž. Gačević, D. G. Sánchez, E. Calleja. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy. Nano Lett., 15, 1117-1121(2015).
[53] K. Kishino, H. Sekiguchi, A. Kikuchi. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth, 311, 2063-2068(2009).
[54] X. Liu, B. H. Le, S. Y. Woo, S. Zhao, A. Pofelski, G. A. Botton, Z. Mi. Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics. Opt. Express, 25, 30494-30502(2017).
[55] H. Sekiguchi, K. Kishino, A. Kikuchi. Ti-mask selective-area growth of GaN by RF-plasma-assisted molecular-beam epitaxy for fabricating regularly arranged InGaN/GaN Nanocolumns. Appl. Phys. Express, 1, 124002(2008).
[56] H. P. T. Nguyen, M. Djavid, S. Y. Woo, X. Liu, A. T. Connie, S. Sadaf, Q. Wang, G. A. Botton, I. Shih, Z. Mi. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers. Sci. Rep., 5, 7744(2015).
[57] K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, B. Daudin. Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111). Phys. Rev. B, 84, 245302(2011).
[58] H. P. T. Nguyen, K. Cui, S. Zhang, S. Fathololoumi, Z. Mi. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology, 22, 445202(2011).
[59] S. Y. Woo, M. Bugnet, H. P. T. Nguyen, Z. Mi, G. A. Botton. Atomic ordering in InGaN alloys within nanowire heterostructures. Nano Lett., 15, 6413-6418(2015).
[60] X. Liu, Y. Sun, Y. Malhotra, A. Pandey, Y. Wu, K. Sun, Z. Mi. High efficiency InGaN nanowire tunnel junction green micro-LEDs. Appl. Phys. Lett., 119, 141110(2021).
[61] C. Du, Z. Ma, J. Zhou, T. Lu, Y. Jiang, P. Zuo, H. Jia, H. Chen. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption. Appl. Phys. Lett., 105, 071108(2014).
[62] S. Zhao, S. Y. Woo, M. Bugnet, X. Liu, J. Kang, G. A. Botton, Z. Mi. Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett., 15, 7801-7807(2015).
[63] S. A. A. Muyeed, W. Sun, M. R. Peart, R. M. Lentz, X. Wei, D. Borovac, R. Song, N. Tansu, J. J. Wierer. Recombination rates in green-yellow InGaN-based multiple quantum wells with AlGaN interlayers. J. Appl. Phys., 126, 213106(2019).
[64] T. H. Ngo, B. Gil, B. Damilano, K. Lekhal, P. De Mierry. Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction. Superlattices Microstruct., 103, 245-251(2017).
[65] C. Zhao, T. K. Ng, C.-C. Tseng, J. Li, Y. Shi, N. Wei, D. Zhang, G. B. Consiglio, A. Prabaswara, A. A. Alhamoud, A. M. Albadri, A. Y. Alyamani, X. X. Zhang, L.-J. Li, B. S. Ooi. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv., 7, 26665-26672(2017).
[66] S. Deshpande, P. Bhattacharya. An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K. Appl. Phys. Lett., 103, 241117(2013).
[67] S. Jahangir, A. Banerjee, P. Bhattacharya. Carrier lifetimes in green emitting InGaN/GaN disks-in-nanowire and characteristics of green light emitting diodes. Phys. Status Solidi C, 10, 812-815(2013).
[68] W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett., 10, 3355-3359(2010).
[69] A. G. Sarwar, S. D. Carnevale, F. Yang, T. F. Kent, J. J. Jamison, D. W. McComb, R. C. Myers. Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small, 11, 5402-5408(2015).
[70] H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, Z. Mi. p-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett., 11, 1919-1924(2011).
[71] M. M. Muhammed, N. Alwadai, S. Lopatin, A. Kuramata, I. S. Roqan. High-efficiency InGaN/GaN quantum well-based vertical light-emitting diodes fabricated on β-Ga2O3 substrate. ACS Appl. Mater. Interfaces, 9, 34057-34063(2017).
[72] F. Olivier, A. Daami, C. Licitra, F. Templier. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett., 111, 022104(2017).

Set citation alerts for the article
Please enter your email address