[1] Namias V. The fractional order Fourier transform and its application to quantum mechancis [J].Inst. Math.AppL.,1980,25: 241;Namias V. Fractionalization of Hankel transforms [J].Inst. Math. Appl.,1980,26: 187 .
[2] Mendlovic D,Ozakatas H M. Fractional Fourier transforms and their optical implementation:Ⅰ[J].J. Opt. Soc.Am. A,1993,10: 1875.
[3] Ozakatas H M,Mendlovic D. Fractional Fourier transforms and their optical implementation: Ⅱ [J].J. Opt. Soc.Am. A,10: 2522(1993);Opt. Commun. 1993,101: 163.
[4] Karasik Y B. Expression of the kernel of a fractional Fourier transform in elementary functions [J].Opt. Lett.1994,19: 769.
[5] Dorsch R G,Lohmann A W. Fractional Fourier transform used for a lens design problem [J].Appl. Opt. 1995,34: 4111.
[6] Lohmann A W. Image rotation,Wigner rotation,and the fractional Fourier transforms [J].J. Opt. Soc. Am. A 1993,10: 2181.
[7] Mendlovic D,Ozakatas H M,Lohmann A W. Graded index fibers,Wigner-distribution functions and the fractional Fourier transforms [J].Appl. Opt. 1994,33: 6188.
[8] Fan Hongyi,Lu Hailiang. Eigenmodes of fractional Hankel transform derived by the entangled-state method [J].Opt. Lett.,2003,28: 680.
[9] Erdelyi A. Higher Transcendental Functions,The Batemann Manuscript Project [M].McGraw-Hill,1953.
[10] Fan Hongyi. Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transform [J].Opt. Lett.,2003,28: 2177;Yu L,Lu Y Y,Zeng X M,et al. Deriving the integral representation of a fractional Hankel transform from a fractional Fourier transform [J].Opt. Lett.,1998,(23)15:1158.
[11] Wigner E. On the quantum correction for thermodynamic equilibrium [J].Phys. Rev.,1932,40: 749.
[12] Bastians M J. The Wigner distribution function applied to optical signals and system [J].Opt. Commun.,1978,25: 26;Wigner distribution function and its application to first-order optics [J].J. Opt. Soc. Am.,1979,69: 1710.
[13] Dirac P A M. The Principles of Quantum Mechanics [M].Oxford: Clarendon Press,1930.
[14] Fan Hongyi,Klauder J R. Phys. Rev. A,1994,49: 704;Fan Hongyi,Ye Xiong. Common eigenstates of two particles' center-of-mass coordinate and mass-weighted relative momentum [J].Phys. Rev. A,1995,51(4): 3343;Fan Hongyi,Fan Yue. Representation of two-mode squeezing operator [J].Phys. Rev. A,1996,54: 958;For a Review,see Fan Hongyi,Entangled states,squeezed states gained via the route of developing Dirac's symbolic method and their applications [J].Inter. J. Mod. Phys.,2004,18: 1387-1455.
[15] Einstein A,Podolsky B,Rosen N. Can quantam-mechanical description of physical reality be considered complete [J].Phys. Rev.,1935,47: 777.
[16] Fan Hongyi,Zaidi H R,Klauder J R. New approach for calculating the normally ordered form of squeezed operators [J].Phys. Rev. D.,1987,35: 1831;For a Review,see Fan Hongyi,Operator ordering in quantum optics and the development of Dirac's symbolic method [J].Journal of Optics B: Quantum and Semiclassical Optics,2003,5: R147-R163.
[17] Wünsche A. On the IWOP technique in quantum optics [J].J. Opt. B: Quantum Semicalss. Opt. 1999,1: Rll.
[18] Marcuse D. Light Transmission Optics [M].Van Nostrand Peinhold Company,1972.
[19] Yariv A. Optical Electronics in Modern Communications [M].Oxford University Press,Inc.,1997.
[20] Fan Hongyi,Xu Xuefen. Talbot effect in quadratic-index medium studied with two-variable polynomials and entangled states [J].Opt. Lett.,2004,29: 1048.