• Acta Optica Sinica
  • Vol. 35, Issue 3, 328004 (2015)
Wang Yufeng*, Gao Fei, Zhu Chengxuan, He Tingyao, and Hua Dengxin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201535.0328004 Cite this Article Set citation alerts
    Wang Yufeng, Gao Fei, Zhu Chengxuan, He Tingyao, Hua Dengxin. Raman Lidar for Atmospheric Temperature, Humidity and Aerosols up to Troposphere Height[J]. Acta Optica Sinica, 2015, 35(3): 328004 Copy Citation Text show less
    References

    [1] Han Yong, Wang Tijian, Rao Ruizhong, et al.. Progress in the study of physic-optics characteristics of atmospheric aerosols [J]. Acta Physica Sinica, 2008, 57(11): 7396-7404.

    [2] D N Whiteman. Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols [J]. Applied Optics, 2003, 42(15): 2593-2608.

    [3] A Ansmann, M Riebesell, U Wandinger, et al.. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio [J]. Applied Physics B, 1992, 55(1): 18-28.

    [4] Wang Hongwei, Hua Dengxin, Wang Yufeng, et al.. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor [J]. Acta Physica Sinica, 2013, 62(12): 120701.

    [5] G J Nott, T J Duck, J G Doyle, et al.. A remotely operated lidar for aerosol, temperature, and water vapor profiling in the high Arctic [J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(2): 221-234.

    [6] A Behrendt, T Nakamura, M Onishi, et al.. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient [J]. Applied Optics, 2002, 36(41): 7657-7666.

    [7] D Hua, T Kobayashi. UV Rayleigh-Mie Raman lidar for simultaneous measurement of atmospheric temperature and relative humidity profiles in the troposphere [J]. Japanese Journal of Applied Physics, 2005, 44(3): 1287-1291.

    [8] I Balin, I Serikov, S Bobrovnikov, et al.. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar [J]. Applied Physics B, 2004, 79(6): 775-782.

    [9] T Leblanc, I S McDermid, T D Walsh. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring [J]. Atmospheric Measurement Techniques, 2012, 5(1): 17-36.

    [10] A Behrendt, V Wulfmeyer, A Riede, et al.. Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar [C]. SPIE, 2009, 7475: 74750L.

    [11] Zhang Wei, Wu Songhua, Song Xiaoquan, et al.. Atmospheric boundary layer detected by a Fraunhofer lidar over Qingdao surburb [J]. Acta Optica Sinica, 2013, 33(6): 0628002.

    [12] Xie Chenbo, Zhou Jun, Yue Guming, et al.. New mobile Raman lidar for measurement of tropospheric water vapor [J]. Acta Optica Sinica, 2006, 26(9): 1281-1286.

    [13] Liu Dong, Tao Zongming, Wu Decheng, et al.. Development of three-wavelength-Raman-polarization lidar system and case study [J]. Acta Optica Sinica, 2013, 33(2): 0228001.

    [14] Z Tao, D Liu, Z Zhong, et al.. Measurements of cirrus clouds with a three-wavelength lidar [J]. Chinese Optics Letters, 2012, 10(5): 050101.

    [15] Ma Xiaomin, Tao Zongming, Ma Mingjun, et al.. Retrieval method of slide-scatter lidar signals based on charge coupled device technique [J]. Acta Optica Sinica, 2014, 34(2): 0201001.

    [16] Wang Wei, Mao Feiyue, Gong Wei, et al.. Overlap factor calculation method based on laser intensity distribution and its sensitivity analysis [J]. Acta Optica Sinica, 2014, 34(2): 0228005.

    CLP Journals

    [1] Li Bo, Hua Dengxin, Zhou Yan, Zhang Ming, Wang Yufeng, Liu Jun, Di Huige. Synthetical Multilevel Quality Analysis and Control Technique for Raman Lidar Temperature Detection[J]. Acta Optica Sinica, 2017, 37(4): 428003

    [2] Shao Jiangfeng, Hua Dengxin, Wang Li, Wang Jun, Yan Qing. Full-Time Lidar System for Ultraviolet High Spectral Rayleigh Temperature Measurement[J]. Acta Optica Sinica, 2017, 37(6): 601003

    [3] Hong Guanglie, Li Jiatang, Kong Wei, Ge Ye, Shu Rong. 935 nm Differential Absorption Lidar System and Water Vapor Profiles in Convective Boundary Layer[J]. Acta Optica Sinica, 2017, 37(2): 201003

    [4] Cai Yi, Xu Qingshan. Data Assimilation Between Atmospheric Temperature Profile of Moderate Resolution Imaging Spectroradiometer and Ground Sounding Data[J]. Laser & Optoelectronics Progress, 2017, 54(7): 70101

    [5] Sun Haibo, Cao Nianwen. Accuracy of Value k in Aerosol Inversion Optic Properties Based on Lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 12802

    [6] Song Yuehui, Shi Lili, Wang Yufeng, Lu Leilei, Hua Dengxin. Retrieve of Lidar Ratio of Aerosols by Iteration[J]. Chinese Journal of Lasers, 2016, 43(1): 113001

    [7] Shang Zhen, Xie Chenbo, Zhong Zhiqing, Wang Bangxin, Wang Zhenzhu, Zhao Ming, Tan Min, Liu Dong, Wang Yingjian. Raman lidar for measurement of tropospheric water vapor[J]. Infrared and Laser Engineering, 2016, 45(12): 1211003

    [8] Zhang Weiwei, Wang Guoyao, Zhang Zhimin, Greg Baxter, Stephen Collins, Gao Yiqing. Multi-Functional Temperature Sensing with the Fluorescence of (Ba,Sr)2SiO4:Eu2+[J]. Laser & Optoelectronics Progress, 2016, 53(5): 53001

    Wang Yufeng, Gao Fei, Zhu Chengxuan, He Tingyao, Hua Dengxin. Raman Lidar for Atmospheric Temperature, Humidity and Aerosols up to Troposphere Height[J]. Acta Optica Sinica, 2015, 35(3): 328004
    Download Citation