• Photonics Research
  • Vol. 9, Issue 5, 848 (2021)
Ting Dong1, Jie Luo2、3、*, Hongchen Chu1, Xiang Xiong1, Ruwen Peng1, Mu Wang1, and Yun Lai1、4、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 2School of Physical Science and Technology, Soochow University, Suzhou 215006, China
  • 3e-mail: luojie@suda.edu.cn
  • 4e-mail: laiyun@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.409248 Cite this Article Set citation alerts
    Ting Dong, Jie Luo, Hongchen Chu, Xiang Xiong, Ruwen Peng, Mu Wang, Yun Lai. Breakdown of Maxwell Garnett theory due to evanescent fields at deep-subwavelength scale[J]. Photonics Research, 2021, 9(5): 848 Copy Citation Text show less
    References

    [1] J. C. M. Garnett. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. A, 203, 385-420(1904).

    [2] V. A. Markel. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A, 33, 1244-1256(2016).

    [3] T. C. Choy. Effective Medium Theory(1999).

    [4] K. Dolgaleva, R. W. Boyd. Local-field effects in nanostructured photonic materials. Adv. Opt. Photon., 4, 1-77(2012).

    [5] W. Cai, V. Shalaev. Optical Metamaterials: Fundamentals and Applications(2009).

    [6] P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, S. A. Tretyakov. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B, 67, 113103(2003).

    [7] L. Shen, T. Yang, Y. Chau. 50/50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion. Appl. Phys. Lett., 90, 251909(2007).

    [8] R. Pollard, A. Murphy, W. Hendren, P. Evans, R. Atkinson, G. Wurtz, A. Zayats, V. Podolskiy. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett., 102, 127405(2009).

    [9] C. R. Simovski, P. A. Belov, A. V. Atrashchenko, Y. S. Kivshar. Wire metamaterials: Physics and applications. Adv. Mater., 24, 4229-4248(2012).

    [10] J. Luo, H. Chen, B. Hou, P. Xu, Y. Lai. Nonlocality-induced negative refraction and subwavelength imaging by parabolic dispersions in metal-dielectric multilayered structures with effective zero permittivity. Plasmonics, 8, 1095-1099(2013).

    [11] R. L. Chern. Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials. Opt. Express, 21, 16514-16527(2013).

    [12] M. G. Silveirinha. Nonlocal homogenization model for a periodic array of ϵ-negative rods. Phys. Rev. E, 73, 046612(2006).

    [13] A. Alù. First-principles homogenization theory for periodic metamaterials. Phys. Rev. B, 84, 075153(2011).

    [14] J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, Y. Lai. Ultratransparent media and transformation optics with shifted spatial dispersions. Phys. Rev. Lett., 117, 223901(2016).

    [15] S. Li, Y. Wang, W. Zhang, W. Lu, B. Hou, J. Luo, Y. Lai. Observation of wide-angle impedance matching in terahertz photonic crystals. New J. Phys., 22, 023033(2020).

    [16] H. H. Sheinfux, I. Kaminer, Y. Plotnik, G. Bartal, M. Segev. Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory. Phys. Rev. Lett., 113, 243901(2014).

    [17] S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, A. V. Lavrinenko. Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers. Phys. Rev. Lett., 115, 177402(2015).

    [18] A. Andryieuski, A. V. Lavrinenko, S. V. Zhukovsky. Anomalous effective medium approximation breakdown in deeply subwavelength all-dielectric photonic multilayers. Nanotechnology, 26, 184001(2015).

    [19] H. H. Sheinfux, I. Kaminer, A. Z. Genack, M. Segev. Interplay between evanescence and disorder in deep subwavelength photonic structures. Nat. Commun., 7, 12927(2016).

    [20] M. Coppolaro, G. Castaldi, V. Galdi. Effects of deterministic disorder at deeply subwavelength scales in multilayered dielectric metamaterials. Opt. Express, 28, 10199-10209(2020).

    [21] D. V. Novitsky, A. S. Shalin, A. Novitsky. Nonlocal homogenization of PT-symmetric multilayered structures. Phys. Rev. A, 99, 043812(2019).

    [22] M. A. Gorlach, M. Lapine. Boundary conditions for the effective-medium description of subwavelength multilayered structures. Phys. Rev. B, 101, 075127(2020).

    [23] X. Lei, L. Mao, Y. Lu, P. Wang. Revisiting the effective medium approximation in all-dielectric subwavelength multilayers: breakdown and rebuilding. Phys. Rev. B, 96, 035439(2017).

    [24] V. Popov, A. V. Lavrinenko, A. Novitsky. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation. Phys. Rev. B, 94, 085428(2016).

    [25] A. Maurel, J. Marigo. Sensitivity of a dielectric layered structure on a scale below the periodicity: a local homogenized model. Phys. Rev. B, 98, 024306(2018).

    [26] M. Coppolaro, G. Castaldi, V. Galdi. Anomalous light transport induced by deeply subwavelength quasiperiodicity in multilayered dielectric metamaterials. Phys. Rev. B, 102, 075107(2020).

    [27] H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, M. Segev. Observation of Anderson localization in disordered nanophotonic structures. Science, 356, 953-956(2017).

    [28] J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, C. T. Chan. Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index. Phys. Rev. Lett., 112, 073903(2014).

    [29] D. J. Griffiths. Introduction to Electrodynamics(1999).

    [30] J. Song, J. Luo, Y. Lai. Side scattering shadow and energy concentration effects of epsilon-near-zero media. Opt. Lett., 43, 1738-1741(2018).

    [31] T. Dong, J. Luo, H. Chu, X. Xiong, Y. Lai. Breakdown of Maxwell Garnett theory due to evanescent fields at deep-subwavelength scale(2020).

    [32] A. Capretti, Y. Wang, N. Engheta, L. D. Negro. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett., 40, 1500-1503(2015).

    [33] J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao. Capturing photons with transformation optics. Nat. Phys., 9, 518-522(2013).

    [34] B. X. Wang, C. Y. Zhao. Near-resonant light transmission in two-dimensional dense cold atomic media with short-range positional correlations. J. Opt. Soc. Am. B, 37, 1757-1768(2020).

    [35] R. Ruppin. Evaluation of extended Maxwell-Garnett theories. Opt. Commun., 182, 273-279(2000).

    [36] S. Chui, L. Hu. Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys. Rev. B, 65, 144407(2002).

    [37] Y. Wu, J. Li, Z. Q. Zhang, C. T. Chan. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys. Rev. B, 74, 085111(2006).

    [38] N. C. Tansil, Z. Gao. Nanoparticles in biomolecular detection. Nano Today, 1, 28-37(2006).

    [39] A. van Reenen, A. M. de Jong, J. M. den Toonder, M. W. Prins. Integrated lab-on-chip biosensing systems based on magnetic particle actuation–a comprehensive review. Lab Chip, 14, 1966-1986(2014).

    Ting Dong, Jie Luo, Hongchen Chu, Xiang Xiong, Ruwen Peng, Mu Wang, Yun Lai. Breakdown of Maxwell Garnett theory due to evanescent fields at deep-subwavelength scale[J]. Photonics Research, 2021, 9(5): 848
    Download Citation