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Deep-subwavelength all-dielectric composite materials are believed to tightly obey the Maxwell Garnett effective
medium theory. Here, we demonstrate that the Maxwell Garnett theory could break down due to evanescent fields
in deep-subwavelength dielectric structures. By using two- and three-dimensional dielectric composite materials
with inhomogeneities at a scale of λ∕100, we show that local evanescent fields generally occur near the dielectric
inhomogeneities. When tiny absorptive constituents are placed there, the absorption and transmission of the
whole composite will show strong dependence on the positions of the absorptive constituents. The Maxwell
Garnett theory fails to predict such position-dependent characteristics because it averages out the evanescent
fields. By taking the distribution of the evanescent fields into consideration, we have made a correction to
the Maxwell Garnett theory so that the position-dependent characteristics become predictable. We reveal not
only the breakdown of the Maxwell Garnett theory, but also a unique phenomenon of “invisible” loss induced
by the prohibition of electric fields at deep-subwavelength scales. We believe our work promises a route to control
the macroscopic properties of composite materials without changing their composition, which is beyond the
traditional Maxwell Garnett theory. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.409248

1. INTRODUCTION

Controlling the optical properties of photonic materials is a
subject of great importance. One important approach to con-
struct advanced optical materials is to build composite materials
by intermixing two or more homogeneous constituents at deep-
subwavelength scales. Generally, such a composite material can
be homogenized as a continuous effective medium with uni-
form properties [Fig. 1(a)]. In 1904, Maxwell Garnett devel-
oped a simple, but immensely successful, effective medium
theory (EMT) [1]. Fields within the unit cell are considered
local, and material properties are determined by the polariza-
tion and magnetization vectors. In this way, the Maxwell
Garnett EMT gives the effective permittivity (or permeability)
of the composite in terms of the permittivities (or permeabil-
ities) and filling ratios of the individual constituents of the
composite material. In this scenario, the macroscopic optical
properties (e.g., reflection, transmission, and absorption) of
the composite material are insensitive to the details of the con-
stituents (e.g., the position of each inclusion), as they are aver-
aged out in the effective medium description [2–5].

Local homogenization is insufficient for the correct descrip-
tion of wave behaviors in special composite structures involving

extremely large wave vectors or surface wave resonances even in
the deep-subwavelength scale [6–13]. In such cases, the effec-
tive parameters become nonlocal or spatially dispersive (i.e., de-
pendent on wave vectors) [14,15]. For example, strong
nonlocality can be induced by surface plasmons in metal–
dielectric structures even at the deep-subwavelength scale, lead-
ing to unusual effects that include additional modes [8] and
parabolic dispersions [7,10].

On the other hand, deep-subwavelength all-dielectric
composite materials, where surface wave resonances are not
supported, are generally believed to tightly obey the Maxwell
Garnett EMT. Interestingly, Sheinfux et al. [16] very recently
showed the breakdown of EMT in deep-subwavelength
all-dielectric multilayers, which has been numerically and ex-
perimentally demonstrated [17–27]. They found that the trans-
mission through the multilayer structure depends strongly on
nanoscale variations at the vicinity of the effective medium’s
critical angle for total internal reflection. In this circumstance,
the transmission spectra of the actual multilayer and its effective
medium model become significantly different because the ef-
fective medium approach cannot capture the microscopic evan-
escent and propagating waves in different dielectric layers and
tunneling effects [16,17]. These works are focused on the
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one-dimensional (1D) dielectric multilayers, in which evanes-
cent waves occur only under large incident angles.

In 2D and 3D dielectric composite structures, the scenario is
totally different. Inhomogeneity in 2D and 3D models always
produces scattering fields, which contain both propagating
waves [black arrows in Fig. 1(a)] and evanescent waves [red
wavy arrows in Fig. 1(a)] [28]. Such evanescent waves produce
rapidly varying evanescent fields nearby the interfaces of dielec-
tric inhomogeneities even in deep-subwavelength structures.
Since the evanescent fields occur in a very small area, and si-
multaneously increase and decrease at different locations, they
are averaged out in the traditional Maxwell Garnett EMT.

In this work, we investigate 2D and 3D all-dielectric
composite structures at the deep-subwavelength scale. We find
that no matter how small the inhomogeneities are (e.g., even at
a scale <λ∕100, λ is the wavelength in free space), evanescent
fields will always occur nearby the interfaces of dielectric inho-
mogeneities. Because of these inevitable evanescent fields,
Maxwell Garnett EMT breaks down when tiny absorptive con-
stituents are placed into the system. We find that the absorp-
tion and transmission of the whole structure rely strongly on
the positions of the tiny lossy inclusions because they could
experience totally different local fields at different positions.
Since the traditional Maxwell Garnett EMT averages out the
evanescent fields, it fails to predict such position-dependent
characteristics. By taking the evanescent waves into considera-
tion, we have developed a correction to the Maxwell Garnett
EMT, which can accurately predict the position-dependent
transmission and absorption for both 2D and 3D models.

Moreover, we predict an interesting phenomenon of “invisible”
loss induced by the prohibition of electric fields that appears
besides the epsilon-near-zero (ENZ) inclusions. Our work thus
reveals a mechanism to control the bulk properties of photonic
composite materials without changing the composition. This
mechanism is beyond the description of the traditional EMT.

2. BREAKDOWN OF MAXWELL GARNETT
THEORY AND THE CORRECTION

We first consider the deep-subwavelength 2D model illustrated
in Fig. 2(a) under the illumination of transverse-magnetic (TM,
out-of-plane magnetic fields) polarized waves. Generally, inci-
dent waves will be scattered into various directions by different
inclusions. Such scattered waves are usually considered to be
propagating waves (black arrows). However, scattered evanes-
cent waves (red wavy arrows) will also emerge if the sizes of the
inclusions are comparable to or smaller than the wavelength, as
sketched in Fig. 1(a). For visualization, we simulate the wave
propagation in a dielectric composite consisting of a dielectric
host (relative permittivity εh � 2, width w, height h � 0.8w)
and three different dielectric inclusions by using the finite-
element software COMSOL Multiphysics (COMSOL, Inc.,
Burlington, MA, USA). The three inclusions are of elliptical,
circular, and square cross sections, and exhibit relative permit-
tivities of 1, 5, and 3, respectively. Periodic boundary condi-
tions are set on the upper and lower boundaries, and a
TM-polarized plane wave with an electric-field amplitude of
1 V/m and a wavelength of λ � 125h is incident from the free

Fig. 1. (a) Schematic of a deep-subwavelength 2D all-dielectric composite structure (left), which generally can be treated as a continuous effective
medium (right). (b)–(d) Snapshots of (b) Ez , (c) Ex , and (d) jEj when a TM-polarized wave is normally incident from the free space on the left side.
The composite is composed of a host with εh � 2 and three inclusions with relative permittivities of 1, 5, and 3, respectively. The working wave-
length is λ � 125h. (e) Transmittance through the actual composite (lines) and its effective medium model (dots) by assuming N layers of unit cells
along the propagation direction.
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space on the left side. Figures 1(b)–1(d), respectively, present
the snapshots of z-component Ez , x-component Ex , and am-
plitude jEj of the electric fields. There are clearly rapidly vary-
ing electric fields nearby the inclusions (dielectric interfaces).
These evanescent waves are evanescent in the forward and back-
ward directions (i.e., the z direction), but capable of transfer-
ring energy flux from high-ε regions to low-ε regions along
the perpendicular directions (i.e., the x direction) [28]. They
can be understood as a direct consequence of the electromag-
netic field boundary conditions. Generally, at this deep-
subwavelength scale, the electric fields are enhanced in the
low-ε inclusions (the elliptical one), but weakened in the
high-ε inclusions (the circular and square ones), as seen in
Fig. 1(d).

According to the Maxwell Garnett EMT, we can calculate
the effective permittivity εeff of a d -dimensional composite
based on [3]

εeff − εh
εeff � �d − 1�εh

�
X

i

f i
εi − εh

εi � �d − 1�εh
, (1)

where εi and f i are the relative permittivity and filling ratio of
the i-th inclusion. In Fig. 1(e), we compare the transmittance
through the actual composite (dots) and its effective medium
model (lines) by assuming N layers of unit cells along the
propagation direction (i.e., the z direction). The effective
medium prediction matches very well with the simulation re-
sults. This indicates that the existence of evanescent waves in
this configuration does not largely affect the validity of the
EMT. This is understandable because the evanescent fields
nearby the inclusions are simultaneously enhanced and weak-
ened at different locations, which are usually averaged out in
the EMT.

Nevertheless, the Maxwell Garnett EMT will become inac-
curate and even break down completely when the composite

contains tiny dissipative inclusions, whose sizes are comparable
to or smaller than the decay length of the evanescent fields.
When such tiny absorptive inclusions are placed close to the
large inclusions, they will experience strongly enhanced or
weakened fields instead of the averaged fields, which will lead
to position-dependent absorption and transmission character-
istics. In terms of absorption, the deviation from the Maxwell
Garnett EMT could be significantly large, as we will demon-
strate below.

For simplicity, we consider an example of a 2D dielectric
composite consisting of a dielectric host (relative permittivity
εh, width w, height h � 0.8w) and an inclusion with circular
cross section (relative permittivity ε1, radius r1 � 0.15w), as
shown in Fig. 2. A TM-polarized wave with wavelength of
λ � 125h is incident from the free space on the left side.
Figures 2(a) and 2(c) present the simulated jEj-distributions
for the case with εh � 2 and ε1 � 5, and the case with
εh � 5 and ε1 � 2, respectively. In Fig. 2(a), it is seen that
the electric fields on the upper/lower side of the inclusion
(e.g., position 1) are enhanced, while those on the left/right
side are weakened (e.g., positions 2 and 3). In Fig. 2(c), the
situation is just the opposite. The existence of such evanescent
fields is guaranteed by the electromagnetic field boundary con-
ditions on the interface of the inclusions. Next, we provide an
understanding based on the quasi-static model. Since the inclu-
sion is in the deep-subwavelength scale, we assume a back-
ground uniform electric field E0 (along the x direction) in
the host without inclusions, which is induced by the electric
field of incidence in simulations. Then, the electric field inside
the circular inclusion will be E1 � 2εh

εh�ε1
E0 [29]. When ε1 > εh

(or ε1 < εh), we have E1 < E0 (E1 > E0), indicating weakened
(or enhanced) electric fields inside the high-ε (or low-ε) inclu-
sions, as observed in Figs. 1(d), 2(a), and 2(c). Considering
the continuity boundary condition at the host-inclusion

Fig. 2. (a) and (c) jEj-distributions for the composite structure with (a) εh � 2 and ε1 � 5, (c) εh � 5 and ε1 � 2 illuminated by a TM-polarized
wave under normal incidence. The working wavelength is λ � 125h. The dashed circles denote the positions of additional tiny inclusions. (b) and
(d) Absorptance by the composite with (b) εh � 2 and ε1 � 5, and (d) εh � 5 and ε1 � 2 as functions of the working wavelength based on
simulations of the actual composite (dots), traditional EMT (solid lines), and corrected EMT (dashed lines), when an additional tiny inclusion
successively moves from position 1 to position 4. The radius of the tiny inclusion is r1∕6, and the relative permittivity is 2� i in (b) and 5� i in (d).
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interface, we find that the electric fields in the host nearby the
interface are

ELR
h � E1 �

2εh
εh � ε1

E0 and EUL
h � ε1E1

εh
� 2ε1

εh � ε1
E0,

(2)

on the left/right side (e.g., positions 2 and 3) and upper/lower
side (e.g., position 1), respectively. Equation (2) implies
ELR
h < E0 and EUL

h > E0 for the case of ε1 > εh, while
ELR
h > E0 and EUL

h < E0 for the case of ε1 < εh, as observed
in Figs. 2(a) and 2(c). In particular, if εh ≫ ε1 → 0, we have
ELR
h � E1 → 2E0 and EUL

h → 0, implying an interesting phe-
nomenon of the so-called “side scattering shadows” [30], as we
will discuss below. If there exists an additional tiny absorptive
inclusion close to the circular one, the absorptive constituent
will experience dramatically different local fields at different
positions. This would lead to position-dependent transmission
characteristics as well as the breakdown of the traditional
Maxwell Garnett EMT.

For demonstration, in Fig. 2(a), we add an additional dielec-
tric inclusion with a material loss (relative permittivity
εa � 2� i, radius ra � r1∕6), as illustrated by dashed circles
at positions 1–4. The additional inclusion is much smaller than
the original one, so that the original evanescent fields are not
largely disturbed and the additional inclusion can experience
enhanced or weakened local fields instead of the averaged fields.
The absorptance by the composite is plotted in Fig. 2(b) as a
function of the working wavelength when the additional inclu-
sion successively moves from position 1 to position 4. We can
see that the wave absorption for the additional inclusion at po-
sition 1 is much larger than that at other positions, because the
electric field induced by evanescent scattering waves is largest at
position 1. This clearly shows the dependence of wave absorp-
tion on the positions of the tiny inclusion. However, the tradi-
tional EMT [i.e., Eq. (1)] ignores the evanescent fields and thus
gives the same absorptance [black solid lines in Fig. 2(b)],
which almost coincides with the result for the case of position
4 where evanescent waves almost disappear. The traditional
EMT cannot capture the details of evanescent fields at the
deep-subwavelength scale and thus fails in correctly describing
such a position-dependent absorption.

Interestingly, by taking the evanescent fields into consider-
ation, we can modify the formula of the traditional EMT, to
give correct description of the position-dependent absorption
and transmission characteristics. The effective permittivity of
the d -dimensional composite containing M large inclusions
andM 0 tiny inclusions can be calculated based on the corrected
formula as

εeff − εh
εeff � �d − 1�εh

�
XM

i

f i
εi − εh

εi � �d − 1�εh

�
XM 0

j

f aj

β2j �εaj − εh�
dεh � βj�εaj − εh�

, (3)

where βj denotes the correction factor for the j-th additional
tiny inclusion (relative permittivity εaj, filling ratio f aj).
Here, βj can be evaluated by the ratio between the local field
where the tiny inclusion is placed and the averaged field of the

whole composite in the absence of additional inclusions
through numerical simulations. The derivation of the corrected
EMT can be found in the supplementary materials in Ref. [31].
On the other hand, for simple cylindrical models, the value of
βj can be roughly evaluated based on Eq. (2) as βj ≈ jEj

hj∕jE0j,
with Ej

h being the local electric field where the j-th tiny inclu-
sion lies. In this way, we find that the βj varies in the range of
2εh

εh�ε1
≤ βj ≤

2ε1
εh�ε1

when εh < ε1 (or 2ε1
εh�ε1

≤ βj ≤
2εh

εh�ε1
when

ε1 < εh). This indicates that the βj ranges from 0 to 2 in
2D models.

From the field-distribution in Fig. 2(a), we find that the
correction factor β at positions 1–4 is around 1.386, 0.7158,
0.7165, and 1.028, respectively. The β at positions 2 and 3 is
nearly the same, because the composite lies in the deep
subwavelength scale. If the working wavelength tends to be in-
finitely long, we will get exactly the same β under the electro-
static limit [see Eq. (2)]. We also see that the β at position 4 is
near unity, indicating that the evanescent fields are mostly local-
ized in very limited areas. Since Eq. (3) becomes Eq. (1) under
β � 1, the absorption of the case at position 4 is close to
the absorption predicted by the traditional EMT, as seen in
Fig. 2(b). According to the corrected EMT [Eq. (3)], we plot
the absorptance for the cases with the tiny inclusion at positions
1–3, as shown by the dashed lines in Fig. 2(b). We see that the
results coincide with the simulation results quite well, demon-
strating the validity of the proposed correction in the EMT.

We also reanalyze the composite with εh � 5 and ε1 � 2 in
Fig. 2(c) by adding an additional dielectric inclusion with a
material loss (εa � 5� i, ra � r1∕6). The correction factor
β at positions 1–4 is found to be around 0.6486, 1.254,
1.257, and 0.9730, respectively. The absorptance of the
composite as a function of the working wavelength is calculated
based on the simulations of the actual composite, traditional
EMT [Eq. (1)], and corrected EMT [Eq. (3)], as shown by
the dots, solid lines, and dashed lines in Fig. 2(d), respectively.
We see that the traditional EMT fails to correctly describe the
wave absorption when the additional tiny inclusion is close to
the original large inclusion. Interestingly, the proposed cor-
rected EMT can give an accurate description. We note that
the deviation for the cases at positions 2 and 3 is mainly caused
by the inhomogeneity of fields where the additional inclusion
lies. If we further reduce the size of the additional inclusion and
increase the wavelength, the deviation will become smaller.

The proposed correction of the EMT can be applied to di-
electric composites containing arbitrarily shaped inclusions. As
an example, we consider a dielectric composite consisting of a
dielectric host (εh � 2, width w, height h � 0.8w) embedded
with two cloud-like inclusions (ε1 � 5, ε2 � 1) and three ad-
ditional tiny inclusions (having the same relative permittivity
εa � 2� 0.5i, radius ra � 0.015w) placed at positions 1–3,
as illustrated in Fig. 3(a). Figure 3(b) presents the simulated
jEj-distribution in the absence of the additional inclusions
under the illumination of a TM-polarized wave with
λ � 125h, showing rapidly varying fields nearby the two
cloud-like inclusions. Based on this field-distribution, the cor-
rection factors at positions 1–3 are evaluated as 1.246, 1.308,
and 0.697, respectively. The absorptance of this composite is

Research Article Vol. 9, No. 5 / May 2021 / Photonics Research 851



calculated as the function of wavelength based on the simula-
tions of the actual composite, traditional EMT [Eq. (1)], and
corrected EMT [Eq. (3)], as shown by the dots, solid lines, and
dashed lines in Fig. 3(c), respectively. The results clearly dem-
onstrate the breakdown of the traditional EMT, and the val-
idity of the corrected EMT in such a complex composite. In
addition, in Fig. 3(d), we compare the transmittance through
the effective media based on the traditional EMT (black lines)
and the corrected EMT (red lines) by assumingN layers of unit
cells along the propagation direction. The results clearly show
that the significant difference in absorption could lead to a large
deviation in the transmission for large samples. Here, we note
that because the thickness of the composite sample (∼100λ) is
much larger than the working wavelength, the interference
of multiple reflections between the interfaces is omitted in
the calculation.

3. INVISIBLE LOSS INDUCED BY EVANESCENT
FIELDS

The position-dependent characteristic can lead to an interesting
phenomenon (i.e., the disappearance of absorption in dielectric
composites with absorptive constituents). This is impossible
from the viewpoint of traditional EMT, because all inclusions
contribute to the effective parameters. Interestingly, we find
that when tiny absorptive inclusions are placed where
β → 0, the waves cannot “see” them. As a result, the effective
permittivity of the whole composite will be totally independent
of these tiny absorptive inclusions [see Eq. (3)], thus leading to
the disappearance of total absorption. Equation (2) indicates
that the area with β → 0 can actually be obtained if the
composite contains ENZ inclusions, which is also denoted
as “side scattering shadows” [30].

As an example, we consider a 2D composite consisting of a
dielectric host (εh � 2, width w, height h � 0.8w) embedded

with a rectangular ENZ inclusion (ε1 � 0.001, width 0.7w,
height 0.1w) and two slabs of lossy dielectric (εa � 2� i,
width 0.35w, height 0.01w) coated on the upper and lower
surfaces of the ENZ inclusion, as sketched in Fig. 4(a).
Figure 4(b) displays the simulated jEj-distribution in the
absence of the two lossy inclusions when a TM-polarized wave
with λ � 125h is normally incident from the free space on the
left side. Clearly, due to the matching of the displacement fields
inside and outside the ENZ medium, the electric fields be-
come extremely small on the upper and lower sides of the
ENZ inclusion. From the average field in the area where the
lossy inclusions lie, we evaluate the correction factor β as
0.151, which is significantly smaller than unity. Figure 4(c)
presents the absorptance of this composite as a function of
the working wavelength. As expected, the wave absorption
in the actual composite (dots) is negligibly small, which is well
predicted by the corrected EMT (dashed lines). The absorption
predicted by the traditional EMT (solid lines) shows an obvious
deviation from the actual absorption. Moreover, we plot the
transmittance through the effective media based on the tradi-
tional EMT (black lines) and the corrected EMT (red lines)
with N layers of unit cells in Fig. 4(d). We can see that the
transmission in both cases oscillates over N as the result of
Fabry–Perot resonances. The transmission predicted by the tra-
ditional EMT (black lines) decreases quickly when N increases.
At the same time, the transmission oscillation predicted by the
corrected EMT remains almost unchanged (red lines), indicat-
ing the disappearance of loss.

4. 3D MODELS

Besides 2D models, the breakdown of traditional Maxwell
Garnett EMT also applies to 3D models. Figure 5(a) shows
a practical 3D model consisting of a sphere of silicon (Si,
ε1 � 12, radius 15 nm) and eight spheres of indium tin oxide

Fig. 3. (a) Illustration of a complex composite structure consisting of a host embedded with two cloud-like large inclusions and three tiny in-
clusions placed at positions 1–3. (b) jEj-distribution illuminated by a TM-polarized wave under normal incidence in the absence of the three tiny
inclusions. (c) Absorptance by the composite as a function of the working wavelength based on simulations of the actual composite (dots), traditional
EMT (solid lines), and corrected EMT (dashed lines). (d) Transmittance through the effective media based on the traditional EMT (black lines) and
the corrected EMT (red lines) by assuming N layers of unit cells along the propagation direction. The working wavelength is λ � 125h in (b) and
(d). The three tiny inclusions are the same with εa � 2� 0.5i and ra � 0.015w. Other relevant parameters are εh � 2, ε1 � 5, and ε2 � 1.
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(ITO, radius 3 nm) in a host of silica (SiO2, εh � 2.1, side
length 50 nm). The eight ITO spheres are evenly distributed
along the equator line of the Si sphere. The relative permittivity

of the ITO sphere is ε�ω� � ε∞ −
ω2
p

ω�ω�iΓ� [32], where

ε∞ � 3:94, ωp �
ffiffiffiffiffiffiffiffiffi
5.97

p
× 1015 Hz, Γ � 1.88 × 1014 Hz,

and ω is the angular frequency. A plane wave with electric fields

polarized along the x direction is normally incident from the
free space on the left side. Figure 5(b) presents the simulated
jEj-distribution in the absence of the ITO spheres when the
working wavelength is 1400 nm, showing enhanced fields
nearby the poles and weakened fields nearby the equator line
of the Si sphere. Similar to Eq. (2) for the 2D model, we can
also evaluate the electric fields in this 3D model under the
electrostatic limit as [29]

Eequator
h � 3εh

2εh � ε1
E0 and Epole

h � 3ε1
2εh � ε1

E0, (4)

where Eequator
h and Epole

h are, respectively, the electric fields in the
host near the equator line and the pole of the Si sphere.
Equation (4) provides a way to roughly evaluate the correction
factor βj as βj ≈ jEj

hj∕jE0j in the simple spherical model. We
find that the βj varies in the range of 3εh

2εh�ε1
≤ βj ≤

3ε1
2εh�ε1

when

εh < ε1 (or 3ε1
2εh�ε1

≤ βj ≤
3εh

2εh�ε1
when ε1 < εh). This means

that the βj ranges from 0 to 1.5 or 3 in 3D models.
Since ε1 > εh in the model in Fig. 5(a), we have

Eequator
h < E0 and Epole

h > E0, as observed in Fig. 5(b). This in-
dicates the rapid variation of electric fields nearby the Si sphere
(i.e., the existence of evanescent fields). Likewise, if additional
tiny inclusions experiencing the evanescent local fields exit, the
traditional Maxwell Garnett EMT will fail to describe such
location-dependent situations.

For verification, we have calculated the absorptance as a
function of the working wavelength, as shown in Fig. 5(c).
The dots and solid lines denote the results obtained through
the simulation of the actual composite and the traditional
EMT [Eq. (1)], respectively. Clearly, the effective medium
model overestimates the absorption because the fields experi-
enced by the ITO spheres are weakened. Interestingly, the pro-
posed correction of EMT in Eq. (3) can accurately describe the
situation for such 3D models. Based on the field distribution,

Fig. 5. (a) Illustration of a 3D composite structure consisting of a
SiO2 host and a Si sphere (radius 15 nm) surrounded by eight tiny
ITO spheres (radius 3 nm). (b) jEj-distribution illuminated by a plane
wave under normal incidence in the absence of the ITO spheres.
(c) Absorptance by the composite as a function of working wavelength
based on simulations of the actual composite (dots), traditional EMT
(solid lines), and corrected EMT (dashed lines). (d) Transmittance on
a log scale [i.e., log�T �], through the effective media based on the
traditional EMT (black lines) and the corrected EMT (red lines)
by assuming N layers of unit cells along the propagation direction.
The working wavelength is 1400 nm in (b) and (d).

Fig. 4. (a) Illustration of a composite structure consisting of a host embedded with ENZ inclusion and two lossy inclusions. (b) jEj-distribution
illuminated by a TM-polarized wave under normal incidence in the absence of the lossy inclusions. (c) Absorptance by the composite as functions of
the working wavelength based on simulations of the actual composite (dots), traditional EMT (solid lines), and corrected EMT (dashed lines).
(d) Transmittance through the effective media based on the traditional EMT (black lines) and the corrected EMT (red lines) by assumingN layers of
unit cells along the propagation direction. The working wavelength is λ � 125h in (b) and (d). The two tiny inclusions are the same with
εa � 2� i. Other relevant parameters are εh � 2 and ε1 � 0.001.
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we find out the correction factor is 0.66. Then, we calculate the
absorptance via the corrected EMT according to Eq. (3), and
plot the results as dashed lines in Fig. 5(c), showing a good
match with the actual composite simulation results. Moreover,
we plot the transmittance on a log scale [i.e., log�T �] through
the effective media based on the traditional EMT (black lines)
and the corrected EMT (red lines) with N layers of unit cells at
the wavelength of 1400 nm, as displayed in Fig. 5(d). The in-
terference of multiple reflections is omitted because the total
thickness (∼300 μm) is much larger than the working wave-
length. It is seen that the transmittance predicted by the tradi-
tional EMT decreases much faster than that predicted by the
corrected EMT.

5. DISCUSSION AND CONCLUSION

It is noteworthy that the physical mechanism of the breakdown
of EMT in 1D dielectric multilayers [16–27] and 2D/3D di-
electric composite structures studied here is fundamentally dif-
ferent. In 1D dielectric multilayers, the EMT breaks down
close to the total internal reflection angle originating from tun-
neling effects of evanescent waves. Under the critical incident
angle, the waves become evanescent in low-ε layers, but remain
propagating in high-ε layers. Since the layers are deep-subwave-
length, the incident waves may still propagate through the mul-
tilayer via tunneling, whereas the EMT does not capture this
physics, thus leading to the failure of the EMT [16,17].
Nevertheless, in our proposed 2D/3D structures, the funda-
mental origin for the breakdown of the EMT is the dramati-
cally varying evanescent fields induced by the field-matching
condition on the surfaces of the inhomogeneities. When there
are tiny absorptive inclusions experiencing such varying local
fields, the macroscopic properties (e.g., reflection, transmis-
sion, and absorption) of the composite structures become sen-
sitive to the positions of those tiny inclusions. Such varying
local fields can be comprehended as the excitation of high-order
modes [33] instead of a dipole–dipole interaction [34].
However, in the traditional EMT description, these details
are averaged out, thus leading to the breakdown of the
EMT. We note that the breakdown in the 2D/3D structures
does not rely on the angle of incidence, which can be observed
even under normal incidence as shown above.

The continuity of the electric displacement at the inclusion–
host interfaces plays an important role in generating the dra-
matically varying evanescent fields at this deep-subwavelength
scale. For instance, in 3D models, the electric fields inside in-
clusions are nearly uniform. Since the inclusion–host interface
is spherical, it is parallel to the fields at some places, but
perpendicular to them at other places. This leads to rapidly
varying fields in the host nearby the inclusion–host interface.
This scenario can also be seen in 2D models for the TM polari-
zation, as we have demonstrated above. However, we also note
that for transverse-electric (TE, out-of-plane electric fields)
polarization in 2D models, the electric fields nearby the
inclusion–host interface are always parallel to the interface.
In this case, the traditional Maxwell Garnett EMT is still valid.
Additional details can be found in the supplementary materials
of Ref. [31].

Alternatively, the breakdown of the EMT can also be under-
stood from the mode interactions. In the deep-subwavelength
scale, the dipole mode of particles dominates, while high-order
modes are generally negligibly small. For subwavelength objects
far from each other, the dipole approximation is valid, which is
the basis of the traditional EMT [2]. For objects close to each
other, however, the contribution from high-order modes would
be dramatic [33], thus leading to the failure of the tradi-
tional EMT.

We note that the discovered position-dependent transmission/
absorption characteristics at the deep-subwavelength scale are be-
yond the extended EMT [35–37]. The extended EMT is usually
used to deal with the composite with components rather than
that subwavelength, where high-order terms must be considered.
However, in our deep-subwavelength structures, the high-order
terms would be negligibly small. In such deep-subwavelength
models, the extended EMT will be consistent with the traditional
EMT.

Finally, it is also worth noting that for simple structures like
cylinders and spheres, the correction factor β can be analytically
evaluated based on Eqs. (2) and (4) without using numerical
simulations, which leads to β in the range of 0–2 (or 0–1.5 or
3) for the 2D cylindrical (or 3D spherical) models. Based on
this range of values, we can immediately obtain the range of
potential deviation for the EMT estimation. This information
is valuable in many situations. For example, in complicated
structures (e.g., Figs. 3 and 4), although numerical analysis
is needed to precisely compute β because there are no longer
simple analytical solutions, our theory can still serve as a guide
to design and control absorption without changing the compo-
sition of the material. This is unimaginable from the viewpoint
of traditional EMT, which is deeply believed in optics. We be-
lieve, however, that the numerical simulation will not ruin the
value and universality of our proposed corrected EMT.

In summary, we have considered the model of dielectric
composites with absorptive constituents. Such a description
is generally valid in many circumstances where the absorption
is mainly induced by some tiny particles or molecules in the
system. Because the region of absorption is determined by the
positions of the absorptive constituents, such a case can maxi-
mize the difference induced by the evanescent fields at the
deep-subwavelength scale. The breakdown of the traditional
EMT is inevitable because it simply averages out the evanescent
fields and ignores their feature. A correction by taking the
distribution of evanescent fields into consideration can signifi-
cantly increase the accuracy of the EMT prediction. Although
traditional wisdom tells us that dielectric structures at the deep-
subwavelength scale can be well predicted by the EMT based
on homogenized fields, our finding reveals an intriguing excep-
tional case where the traditional EMT fundamentally breaks
down. We have demonstrated that a microscopic variation
of dielectric structure at the deep-subwavelength scale can also
lead to a dramatic difference in bulk behaviors, even when the
composition of the composite is fixed. Actually, the proposed
configuration is common in biomedicine and molecular biol-
ogy. Nanoparticles are usually used to defect biomolecules and
diagnostic assay, forming a configuration consisting of large
nanoparticles and nearby absorptive biomolecules [38,39].
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We therefore believe that in addition to the importance of
understanding the EMT, our work will also be very interesting
and will have an effect on advanced photonics, bioscience, and
practical applications.
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