• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170616 (2019)
Angzhen Li1 and Pengfei Wang1、2、*
Author Affiliations
  • 1 Key Laboratory of In-fiber Integrated Optics of Ministry of Education, Science College, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • 2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • show less
    DOI: 10.3788/LOP56.170616 Cite this Article Set citation alerts
    Angzhen Li, Pengfei Wang. Research Development of Glass-Based Microsphere Laser[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170616 Copy Citation Text show less
    References

    [1] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [2] He L N, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).

    [3] Ward J, Benson O. WGM microresonators: sensing, lasing and fundamental optics with microspheres[J]. Laser & Photonics Reviews, 5, 553-570(2011).

    [4] He L N, Özdemir Ş K, Zhu J G et al. Detecting single viruses and nanoparticles using whispering gallery microlasers[J]. Nature Nanotechnology, 6, 428-432(2011).

    [5] Zhu G Y, Xu C X, Cai L S et al. Lasing behavior modulation for ZnO whispering-gallery microcavities[J]. ACS Applied Materials & Interfaces, 4, 6195-6201(2012).

    [6] Yakunin S, Protesescu L, Krieg F et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 6, 8056(2015).

    [7] Tang B, Dong H X, Sun L X et al. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 11, 10681-10688(2017).

    [8] Che K J, Tang D Y, Ren C Y et al. Thermal characteristics of Brillouin microsphere lasers[J]. IEEE Journal of Quantum Electronics, 54, 1000108(2018).

    [9] Wang X X, Xu C X, Qin F F et al. Ultraviolet lasing in Zn-rich ZnO microspheres fabricated by laser ablation[J]. Nanoscale, 10, 17852-17857(2018).

    [10] Ta V D, Caixeiro S, Fernandes F M et al. Microsphere solid-state biolasers[J]. Advanced Optical Materials, 5, 1601022(2017).

    [11] Wang W C, Zhou B, Xu S H et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 101, 90-171(2019).

    [12] Chiasera A, Dumeige Y, Féron P et al. Spherical whispering-gallery-mode microresonators[J]. Laser & Photonics Reviews, 4, 457-482(2010).

    [13] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 137, 393-397(1989).

    [14] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators[J]. Optics Letters, 21, 453-455(1996).

    [15] Vernooy D W, Ilchenko V S, Mabuchi H et al. High-Q measurements of fused-silica microspheres in the near infrared[J]. Optics Letters, 23, 247-249(1998).

    [16] Li A Z, Yu J B, Zhang M et al. An Yb 3+-Ho 3+ codoped glass microsphere laser in the 2.0 μm wavelength regions [J]. IEEE Photonics Technology Letters, 30, 1543-1546(2018).

    [17] Vanier F, Côté F, Amraoui M E et al. Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres[J]. Optics Letters, 40, 5227-5230(2015).

    [18] Cai M, Painter O, Vahala K J et al. Fiber-coupled microsphere laser[J]. Optics Letters, 25, 1430-1432(2000).

    [19] Fang Z J, Chormaic S N, Wang S Y et al. Bismuth-doped glass microsphere lasers[J]. Photonics Research, 5, 740-744(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171207000131DaGdJf

    [20] Way B, Jain R K, Hossein-Zadeh M. High-Q microresonators for mid-IR light sources and molecular sensors[J]. Optics Letters, 37, 4389-4391(2012).

    [21] Grillet C, Magi E, Eggleton B J. Fiber taper coupling to chalcogenide microsphere modes. [C]// 2008 Conference on Lasers and Electro-Optics, May 4-8, 2008, San Jose, CA, USA. Washington, D. C.: OSA, CFO7(2008).

    [22] Broaddus D H, Foster M A, Agha I H et al. Silicon-waveguide-coupled high-Q chalcogenide microspheres[J]. Optics Express, 17, 5998-6003(2009).

    [23] Wang P F, Ding M, Lee T et al. Packaged chalcogenide microsphere resonator with high Q-factor[J]. Applied Physics Letters, 102, 131110(2013).

    [24] Zou C L, Shu F J, Sun F W et al. Theory of free space coupling to high-Q whispering gallery modes[J]. Optics Express, 21, 9982-9995(2013).

    [25] Little B E, Laine J P, Haus H A. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators[J]. Journal of Lightwave Technology, 17, 704-715(1999).

    [26] Murphy R M J, Lei F C, Ward J M et al. . All-optical nanopositioning of high-Q silica microspheres[J]. Optics Express, 25, 13101-13106(2017).

    [27] Hench L L, West J K. The sol-gel process[J]. Chemical Reviews, 90, 33-72(1990).

    [28] Danks A E, Hall S R, Schnepp Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis[J]. Materials Horizons, 3, 91-112(2016).

    [29] Yang L, Vahala K J. Gain functionalization of silica microresonators[J]. Optics Letters, 28, 592-594(2003).

    [30] Peng L X, Huang Y T, Duan Y F et al. 2 μm laser oscillation of Ho 3+∶Tm 3+-codoped silica microspheres [J]. Applied Optics, 56, 7469-7473(2017).

    [31] Li A Z, Zhang J Q, Zhang M et al. Effect of Tm 3+ concentration on the emission wavelength shift in Tm 3+-doped silica microsphere lasers [J]. Optics Letters, 43, 4325-4328(2018).

    [32] Yang Z S, Wu Y H, Zhang X D et al. Low temperature fabrication of chalcogenide microsphere resonators for thermal sensing[J]. IEEE Photonics Technology Letters, 29, 66-69(2017).

    [33] Yang Z S, Wu Y H, Yang K et al. Fabrication and characterization of Tm 3+-Ho 3+ co-doped tellurite glass microsphere lasers operating at ~2.1 μm [J]. Optical Materials, 72, 524-528(2017).

    [34] Yang K, Dai S X, Wu Y H et al. Fabrication and characterization of Ge-Ga-Sb-S glass microsphere lasers operating at ~1.9 μm[J]. Chinese Physics B, 27, 117701(2018).

    [35] Sandoghdar V, Treussart F, Hare J et al. Very low threshold whispering-gallery-mode microsphere laser[J]. Physical Review A, 54, R1777-R1780(1996).

    [36] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 415, 621-623(2002).

    [37] Guo C L, Che K J, Cai Z P et al. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation[J]. Optics Letters, 40, 4971-4974(2015).

    [38] Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity[J]. Physical Review A, 59, 2418-2421(1999).

    [39] Shopova S I, Farca G, Rosenberger A T et al. Microsphere whispering-gallery-mode laser using HgTe quantum dots[J]. Applied Physics Letters, 85, 6101-6103(2004).

    [40] Lousteau J, Boetti N G, Negro D et al. Photonic glasses for IR and mid-IR spectral range[J]. Proceedings of SPIE, 10564, 1056435(2017).

    [41] Boetti N G, Pugliese D, Ceci-Ginistrelli E et al. Highly doped phosphate glass fibers for compact lasers and amplifiers: a review[J]. Applied Sciences, 7, 1295(2017).

    [42] Li M Q, Gan J L, Zhang Z S et al. Single mode compound microsphere laser[J]. Optics Communications, 420, 1-5(2018).

    [43] Dong C H, Xiao Y F, Han Z F et al. Low-threshold microlaser in Er∶Yb phosphate glass coated microsphere[J]. IEEE Photonics Technology Letters, 20, 342-344(2008).

    [44] Chen S Y, Sun T. Grattan K T V, et al. Characteristics of Er and Er-Yb-Cr doped phosphate microsphere fibre lasers[J]. Optics Communications, 282, 3765-3769(2009).

    [45] Ward J M, Chormaic S N. Thermo-optical tuning of whispering gallery modes in Er∶Yb co-doped phosphate glass microspheres[J]. Applied Physics B, 100, 847-850(2010).

    [46] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 3, 187-203(1994).

    [47] Madden S J, Vu K T. High-performance integrated optics with tellurite glasses: status and prospects[J]. International Journal of Applied Glass Science, 3, 289-298(2012).

    [48] Sasagawa K, Yonezawa Z O, Iwai R et al. S-band Tm 3+-doped tellurite glass microsphere laser via a cascade process [J]. Applied Physics Letters, 85, 4325-4327(2004).

    [49] Peng X, Song F, Jiang S B et al. Fiber-taper-coupled L-band Er 3+-doped tellurite glass microsphere laser [J]. Applied Physics Letters, 82, 1497-1499(2003).

    [50] Sasagawa K, Kusawake K, Ohta J et al. Nd-doped tellurite glass microsphere laser[J]. Electronics Letters, 38, 1355-1357(2002).

    [51] Kishi T, Kumagai T, Yano T et al. On-chip fabrication of air-bubble-containing Nd 3+-doped tellurite glass microsphere for laser emission [J]. AIP Advances, 2, 042169(2012).

    [52] Wu J F, Jiang S B, Qua T et al. 2 μm lasing from highly thulium doped tellurite glass microsphere[J]. Applied Physics Letters, 87, 211118(2005).

    [53] Kishi T, Kumagai T, Shibuya S et al. Quasi-single mode laser output from a terrace structure added on a Nd 3+-doped tellurite-glass microsphere prepared using localized laser heating [J]. Optics Express, 23, 20629-20635(2015).

    [54] Percival R M, Szebesta D, Williams J R et al. Diode pumped operation of thulium doped fluoride fibre amplifier suitable for first window systems[J]. Electronics Letters, 30, 1598-1599(1994).

    [55] Wu J F, Jiang S B, Peyghambarian N. 1.5-μm-band thulium-doped microsphere laser originating from self-terminating transition[J]. Optics Express, 13, 10129-10133(2005).

    [56] Li A Z, Li W H, Zhang M et al. Tm 3+-Ho 3+ codoped tellurite glass microsphere laser in the 1.47 μm wavelength region [J]. Optics Letters, 44, 511-513(2019).

    [57] Jha A, Richards B, Jose G et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials[J]. Progress in Materials Science, 57, 1426-1491(2012).

    [58] Murugan G S, Zervas M N, Panitchob Y et al. Integrated Nd-doped borosilicate glass microsphere laser[J]. Optics Letters, 36, 73-75(2011).

    [59] Dong C H, Yang Y, Shen Y L et al. Observation of microlaser with Er-doped phosphate glass coated microsphere pumped by 780 nm[J]. Optics Communications, 283, 5117-5120(2010).

    [60] Pal A, Chen S Y, Sen R et al. A high-Q low threshold thulium-doped silica microsphere laser in the 2 μm wavelength region designed for gas sensing applications[J]. Laser Physics Letters, 10, 085101(2013).

    [61] Huang Y T, Guo C L, Huang Yet al. Ytterbium-doped silica microsphere laser [J]. Materials, 278/279/280, 1063-1067(2013).

    [62] Fan H B, Hua S Y, Jiang X S et al. Demonstration of an erbium-doped microsphere laser on a silicon chip[J]. Laser Physics Letters, 10, 105809(2013).

    [63] Li Q L, Huang Y T, Lin Y J et al. Ultralow-threshold laser in a Nd 3+ doped silica microsphere [J]. Optics Communications, 356, 368-372(2015).

    [64] Iqbal T, Shahriari M R, Merberg G et al. Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3[J]. Journal of Materials Research, 6, 401-406(1991).

    [65] Stephen G, Xu H Y, Cai Z P et al. Er∶ZBLALiP whispering-gallery mode lasers at 1550-nm investigation of red-shift due to pump intensity[J]. Proceedings of SPIE, 4629, 181-189(2002).

    [66] MortierM, GoldnerP, FéronP, et al. New fluoride glasses for laser applications[J]. Journal of Non-Crystalline Solids, 2003, 326/327: 505-509.

    [67] Cai Z P, Xu H Y, Stéphan G M et al. Red-shift in Er∶ZBLALiP whispering gallery mode laser[J]. Optics Communications, 229, 311-315(2004).

    [68] Shortt B, Carey R, Chormaic S N. Characterization of Er∶ZBNA microspherical lasers[J]. Proceedings of SPIE, 5827, 47-57(2005).

    [69] Miura K, Tanaka K, Hirao K. Laser oscillation of a Nd 3+-doped fluoride glass microsphere [J]. Journal of Materials Science Letters, 15, 1854-1857(1996).

    [70] Lissillour F, Feron P, Dubreuil N et al. Whispering-gallery mode Er-ZBLAN microlasers at 1.56 um[J]. Proceedings of SPIE, 3611, 199-205(1999).

    [71] Deng Y, Jain R K, Hossein-Zadeh M. Demonstration of a CW room temperature mid-IR microlaser[J]. Optics Letters, 39, 4458-4461(2014).

    [72] Zhao H Y, Li A Z, Yi Y T et al. A Tm 3+-doped ZrF4-BaF2-YF3-AlF3 glass microsphere laser in the 2.0 μm wavelength region [J]. Journal of Luminescence, 212, 207-211(2019).

    [73] Shiryaev V S, Churbanov M F. Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics[J]. Journal of Non-Crystalline Solids, 475, 1-9(2017).

    [74] BureauB, Zhang XH, SmektalaF, et al. Recent advances in chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 2004, 345/346: 276-283.

    [75] Shiryaev V S, Churbanov M F. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission[J]. Journal of Non-Crystalline Solids, 377, 225-230(2013).

    [76] Elliott G R, Murugan G S, Wilkinson J S et al. Chalcogenide glass microsphere laser[J]. Optics Express, 18, 26720-26727(2010).

    [77] Li C R, Dai S X, Zhang Q Y et al. Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser[J]. Chinese Physics B, 24, 044208(2015).

    [78] González-Pérez S, Lahoz F, Cáceres J M et al. Energy transfer in Pr 3+-Yb 3+ codoped oxyfluoride glass ceramics [J]. Optical Materials, 29, 1231-1235(2007).

    [79] Yi L X, Wang M, Feng S Y et al. Emissions properties of Ho 3+∶ 5I7→ 5I8 transition sensitized by Er 3+ and Yb 3+ in fluorophosphate glasses [J]. Optical Materials, 31, 1586-1590(2009).

    [80] Guo Y Y, Gao G J, Li M et al. Er 3+-doped fluoro-tellurite glass: a new choice for 2.7 μm lasers [J]. Materials Letters, 80, 56-58(2012).

    [81] Nazabal V, Poulain M, Olivier M et al. Fluoride and oxyfluoride glasses for optical applications[J]. Journal of Fluorine Chemistry, 134, 18-23(2012).

    [82] Bai G X, Tao L L, Li K F et al. Enhanced ~2 μm and upconversion emission from Ho-Yb codoped oxyfluoride glass ceramics[J]. Journal of Non-Crystalline Solids, 361, 13-16(2013).

    [83] Wang W C, Yuan J, Chen D D et al. Enhanced broadband 1.8 μm emission in Bi/Tm 3+ co-doped fluorogermanate glasses [J]. Optical Materials Express, 5, 1250-1258(2015).

    [84] Wang X, Yu Y Z, Wang S B et al. Single mode green lasing and multicolor luminescent emission from an Er 3+-Yb 3+ co-doped compound fluorosilicate glass microsphere resonator [J]. OSA Continuum, 1, 261-273(2018).

    [85] Wu T J, Huang Y T, Huang J et al. Laser oscillation of Yb 3+∶Er 3+ co-doped phosphosilicate microsphere [Invited] [J]. Applied Optics, 53, 4747-4751(2014).

    Angzhen Li, Pengfei Wang. Research Development of Glass-Based Microsphere Laser[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170616
    Download Citation