• Photonics Research
  • Vol. 12, Issue 8, 1776 (2024)
Hao Su1, Jiawen Qiu1, Junlong Li1, Rong Chen2..., Jianbi Le2, Xiaoyang Lei3, Yongai Zhang1,2,4, Xiongtu Zhou1,2,5, Tailiang Guo1,2 and Chaoxing Wu1,2,*|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Information Engineering, Fuzhou University, Fuzhou 350000, China
  • 2Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
  • 3Fujian Inspection and Research Institute for Product Quality, Fuzhou 350002, China
  • 4e-mail: yongaizhang@fzu.edu.cn
  • 5e-mail: xtzhou@fzu.edu.cn
  • show less
    DOI: 10.1364/PRJ.522697 Cite this Article Set citation alerts
    Hao Su, Jiawen Qiu, Junlong Li, Rong Chen, Jianbi Le, Xiaoyang Lei, Yongai Zhang, Xiongtu Zhou, Tailiang Guo, Chaoxing Wu, "Non-destructive electroluminescence inspection for LED epitaxial wafers based on soft single-contact operation," Photonics Res. 12, 1776 (2024) Copy Citation Text show less
    References

    [1] F. Jiang, F. Xu, Z. Liu. Development of GaN-based micro-LED display technology. J. Synth. Cryst., 49, 2013-2023(2020).

    [2] J. Piprek. Efficiency models for GaN-based light-emitting diodes: status and challenges. Materials, 13, 5174(2020).

    [3] Z. Zhou, Y. Li, Y. Yin. Current situation and trend of micro-LED application in near-eye display. Chin. J. Liq. Cryst. Disp., 37, 661-679(2022).

    [4] J. Bae, Y. Shin, H. Yoo. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nat. Commun., 13, 1862(2022).

    [5] Z. Liu, W. Chong, K. Wong. GaN-based LED micro-displays for wearable applications. Microelectron. Eng., 148, 98-103(2015).

    [6] J. Wang, Q. Hua, W. Sha. Flexible GaN-based microscale light-emitting diodes with a batch transfer by wet etching. Opt. Lett., 47, 5052-5055(2022).

    [7] J. Park, J. Choi, K. Kong. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics, 15, 449-455(2021).

    [8] W. Meng, F. Xu, Z. Yu. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol., 16, 1231-1236(2021).

    [9] W. Baek, J. Park, J. Shim. Ultra-low-current driven InGaN blue micro light-emitting diodes for electrically efficient and self-heating relaxed microdisplay. Nat. Commun., 14, 1386(2023).

    [10] M. Reshchikov, H. Morkoc. Luminescence properties of defects in GaN. J. Appl. Phys., 97, 061301(2006).

    [11] J. Shim, D. Han, D. Shin. Wafer-level electroluminescence metrology for InGaN light-emitting diodes. IEEE J. Quantum Electron., 52, 3300406(2016).

    [12] K. Wang, Y. Liu, C. Wu. Electroluminescence from μLED without external charge injection. Sci. Rep., 10, 8059(2020).

    [13] K. Wang, P. Chen, J. Chen. Alternating current electroluminescence from GaN-based nanorod light-emitting diodes. Opt. Laser Technol., 140, 107044(2021).

    [14] K. Wang, Y. Liu, R. Chen. Light-pulse splitting from nano-light-emitting diodes operating in noncarrier injection mode. IEEE Electron Device Lett., 42, 1033-1036(2021).

    [15] P. Chen, K. Wang, J. Chen. Achieving wide operating voltage windows in non-carrier injection micro-LEDs for enhancing luminance robustness. IEEE Trans. Electron Devices, 69, 212-215(2022).

    [16] W. Li, K. Wang, J. Li. Working mechanisms of nanoscale light-emitting diodes operating in non-electrical contact and non-carrier injection mode: modeling and simulation. Nanomaterials, 12, 912(2022).

    [17] C. Wu, K. Wang, T. Guo. Theoretical study of led operating in noncarrier injection mode. Nanomaterials, 12, 2532(2022).

    [18] W. Li, K. Wang, J. Sun. Device simulation on GaN-LED operating in noncarrier injection mode for performance improvement by enhancing the tunneling effect in multiquantum wells. Adv. Electron. Mater., 9, 2300298(2023).

    [19] Y. Liu, K. Wang, C. Wu. Triboelectric-nanogenerator-inspired light-emitting diode-in-capacitors for flexible operation in high-voltage and wireless drive modes. Nano Energy, 78, 105281(2020).

    [20] Y. Liao, W. Li, K. Wang. TENG-inspired LED-in-capacitors for smart self-powered high-voltage monitoring and high-sensitivity demodulation of power-line communications. Nano Energy, 102, 107698(2022).

    [21] Y. Shen, W. Li, K. Wang. In-well ionization from monolayer quantum dots for non-carrier-injection electroluminescence. J. Phys. Chem. Lett., 13, 10649-10655(2022).

    [22] Z. Du, K. Wang, J. Sun. Ultrahigh color conversion efficiency nano-light-emitting diode with single electrical contact. IEEE Trans. Electron Devices, 70, 1156-1161(2023).

    [23] K. Wang, W. Li, R. Chen. High-density led array based on epitaxial slice damage-free process and its single-contact operation mode with low crosstalk. IEEE Electron Device Lett., 44, 1865-1868(2023).

    [24] D. Zhang, F. Xu, Y. Sang. Dominant mechanism of GaN-based single contact micro-LED driven by AC power. IEEE Electron Device Lett., 44, 468-471(2023).

    [25] Y. Pang. Study on influencing factors of wavelength of 4-inch LED epitaxial wafer(2021).

    [26] S. Strite, H. Morko. GaN, AlN, and InN: a review. J. Vac. Sci. Technol. B, 10, 1237-1266(1992).

    [27] V. Cannillo, C. Leonelli, A. R. Bccaccini. Numerical models for thermal residual stresses in Al2O3 platelets/borosilicate glass matrix composites. Mater. Sci. Eng. A, 323, 246-250(2002).

    [28] H. Liu, J. Tao, Y. Gautreau. Simulation of thermal stresses in SiC–Al2O3 composite tritium penetration barrier by finite-element analysis. Mater. Des., 30, 2785-2790(2009).

    [29] T. Wang, Z. Cui, L. Xu. Thermoelastic stress field investigation of GaN material for laser lift-off technique based on finite element method. Chin. Phys. Lett., 26, 094601(2009).

    [30] R. Jin, J. Liu, J. Zhang. Growth of crack-free AlGaN film on thin AlN interlayer by MOCVD. J. Cryst. Growth, 268, 35-40(2004).

    [31] K. Kim, G. Jung, J. Kim. Correlation between photoluminescence and electroluminescence in GaN-related micro light emitting diodes: effects of leakage current, applied bias, incident light absorption and carrier escape. Opt. Mater., 120, 111448(2021).

    [32] M. D. Smith, X. Li, M. J. Uren. Polarity dependence in Cl2-based plasma etching of GaN, AlGaN and AlN. Appl. Surf. Sci., 521, 146297(2020).

    [33] M. Hasegawa, T. Tsutsumi, A. Tanide. In situ surface analysis of an ion-energy-dependent chlorination layer on GaN during cyclic etching using Ar+ ions and Cl radicals. J. Vac. Sci. Technol. A, 38, 042602(2020).

    [34] Y. Zhao, C. L. Jensen, R. W. Chuang. A simple and reliable wafer-level electrical probing technique for III-nitride light-emitting epitaxial structures. IEEE Electron Device Lett., 21, 212-214(2000).

    [35] H. T. Kim, J. Kim, S. T. Kim. A dual side electroluminescence measurement system for LED wafer manufacturing. IEEE International Symposium on Assembly and Manufacturing (ISAM), 1-5(2011).

    [36] J. Kim, H. Kim, S. Kim. Properties of defective regions observed by photoluminescence imaging for GaN-based light-emitting diode epi-wafers. J. Opt. Soc Korea, 19, 687-694(2015).

    [37] W. Jung, J. Kim, H. E. Joe. Using fiber-optic probes for photoluminescence and evaluation of an InGaN GaN epi-wafer. Proc. SPIE, 8839, 88390C(2013).

    Hao Su, Jiawen Qiu, Junlong Li, Rong Chen, Jianbi Le, Xiaoyang Lei, Yongai Zhang, Xiongtu Zhou, Tailiang Guo, Chaoxing Wu, "Non-destructive electroluminescence inspection for LED epitaxial wafers based on soft single-contact operation," Photonics Res. 12, 1776 (2024)
    Download Citation