• Laser & Optoelectronics Progress
  • Vol. 51, Issue 9, 91401 (2014)
Hua Liang1、2、*, Tian Wei2, Liao Wenhe2, and Zeng Chao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop51.091401 Cite this Article Set citation alerts
    Hua Liang, Tian Wei, Liao Wenhe, Zeng Chao. Study of Thermal-Mechanical Coupling Behavior in Laser Cladding[J]. Laser & Optoelectronics Progress, 2014, 51(9): 91401 Copy Citation Text show less
    References

    [1] Hussam El Cheikh, Bruno Courant, Samuel Branchu, et al.. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process [J]. Optics and Lasers in Engineering, 2012, 50(3): 413-422.

    [2] Igor Smurov. Laser cladding and laser assisted direct manufacturing [J]. Surface & Coatings Technology, 2008, 202(18):4496-4502.

    [3] T Baldridge, G Poling, E Foroozmehr, et al.. Laser cladding of inconel 690 on inconel 600 superalloy for corrosion protection in nuclear applications [J]. Optics and Lasers in Engineering, 2013, 51(2): 180-184.

    [4] I Manna, J Dutta Majumdar, B Ramesh Chandra, et al.. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel [J]. Surface & Coatings Technology, 2006, 201(1-2): 434-440.

    [5] J Leunda, C Soriano, C Sanz, et al.. Laser cladding of vanadium-carbide tool steels for die repair [J]. Physics Procedia,2011, 12(A): 345-352.

    [6] E Díaz, J M Amado, J Montero, et al.. Comparative study of Co-based alloys in repairing low Cr-Mo steel components by laser cladding [J]. Physics Procedia, 2012, 39: 368-375.

    [7] W C Tseng, J N Aoh. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J]. Optics & Laser Technology, 2013, 48: 141-152.

    [8] Hao Mingzhong, Sun Yuwen. A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach [J]. International Journal of Heat and Mass Transfer, 2013, 64: 352-360.

    [9] Liu Hao, Yu Gang, He Xiuli, et al.. Three- dimensional numerical simultion of transient temperature field and coating geometry in powder feeding laser cladding [J]. Chinese J Lasers, 2013, 40(12): 1203007.

    [10] Shi Shihong, Wang Chen, Xu Aiqin, et al.. Temperature field numerical simulation of laser cladding based on internal powder feeding through a hollow laser beam [J]. Chinese J Lasers, 2012, 39(3): 0303002.

    [11] Sun Daojin, Liu Jichang, Li Qindong. Phase-fileld method simulation of microstructure evolution at the bottom of melt pool in coaxial laser cladding [J]. Chinese J Lasers, 2013, 40(4): 0403005.

    [12] Tso-Liang Teng, Peng-Hsiang Chang. Effect of residual stresses on fatigue crack initiation life for butt-welded joints[J]. J Materials Processing Technology, 2004, 145(3): 325-335.

    [13] C D M Liljedahl, J Brouard, O Zanellato, et al.. Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351 [J]. International J Fatigue, 2009, 31(6): 1081-1088.

    [14] G Pouget, A P Reynolds. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds [J]. International J Fatigue, 2008, 30(3): 463-472.

    [15] Chen Yunyuan. Performance Data Sheet of Mechanical Engineering Material [M]. Beijing: Mechanical industry Publishing Co., 1995. 105-106.

    [16] Zeng Chao. A Study of Thermal Damage for Laser Cladding Technology and Its Detection [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. 25-26.

    [17] I A Roberts, C J Wang, R Esterlein, et al.. A three- dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing [J]. International J Machine Tools & Manufacture, 2009,49(12-13): 916-923.

    [18] Ehsan Toyserkani, Amir Khajepour, Steve Corbin. 3- D finite element modeling of laser cladding by powder injection:effects of laser pulse shaping on the process [J]. Optics and Lasers in Engineering, 2004, 41(6): 849-867.

    [19] B Brickstad, B L Josefsonb. A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes [J].International J Pressure Vessels and Piping, 1998, 75(1): 1l-25.

    [20] Dean Deng, Hidekazu Murakawa. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Computational Materials Science, 2006, 37(3): 269-277.

    [21] Goldak J,Bibby M,Moore J, et al.. Computer modeling of heat flow in welds [J]. Metallurgical Transactions B, 1986, 17(3): 587-600.

    [22] J W Hirsch, L G Olson, Z Nazir, et al.. Axisymmetric laser welding of ceramics: comparison of experimental and finite element results [J]. Opt Lasers Eng, 1998, 29(6): 465-484.

    [23] M Alimardani, E Toyserkani, J P Huissoon. A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process [J]. Opt Lasers Eng, 2007, 45(12): 1115-1130.

    [24] B S Yilbas, S S Akhtar, C Karatas. Laser surface treatment of Inconel 718 alloy: thermal stress analysis [J]. Opt Lasers Eng, 2010, 48(7-8): 740-749.

    [25] Chao Zeng, Wei Tian, Wen-He Liao, et al.. Study of laser cladding thermal damage: a quantified microhardness method[J]. Surface & Coatings Technology, 2013, 236: 309-314.

    [26] Henry K hler, Knut Partes, Joana Rebelo Kornmeier, et al.. Residual stresses in steel specimens induced by laser cladding and their effect on fatigue strength [J]. Physics Procedia, 2012, 39: 354-361.

    [27] Zhao Shaobian, Wang Zhongbao. Methods and Data of the Anti-Fatigue Design [M]. Beijing: Mechanical Industry Publishing Co., 1997. 96.

    CLP Journals

    [1] Zhang Dongyun, Wu Rui, Zhang Huifeng, Liu Zhen. Numerical Simulation of Temperature Field Evolution in the Process of Laser Metal Deposition[J]. Chinese Journal of Lasers, 2015, 42(5): 503006

    [2] Chen Yazhou, Zhou Liucheng, He Weifeng, Luo Sihai, Jiao Yang, Pang Chengqing, Liu Peng. Molecular Dynamics Simulation of Plastic Deformation of Pure Titanium Under Shock Loading[J]. Chinese Journal of Lasers, 2016, 43(8): 802014

    [3] Shao Jingzhen, Wang Xi, Hu Hongtao, Fang Xiaodong. Thermal Effect Simulation Analysis on Excimer Laser Annealing of Zinc Oxide Thin Films[J]. Laser & Optoelectronics Progress, 2017, 54(6): 61401

    Hua Liang, Tian Wei, Liao Wenhe, Zeng Chao. Study of Thermal-Mechanical Coupling Behavior in Laser Cladding[J]. Laser & Optoelectronics Progress, 2014, 51(9): 91401
    Download Citation