• Photonics Research
  • Vol. 12, Issue 3, 465 (2024)
Zhicheng Jin, Jiageng Chen*, Yanming Chang, Qingwen Liu, and Zuyuan He
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication System and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.512298 Cite this Article Set citation alerts
    Zhicheng Jin, Jiageng Chen, Yanming Chang, Qingwen Liu, Zuyuan He. Silicon photonic integrated interrogator for fiber-optic distributed acoustic sensing[J]. Photonics Research, 2024, 12(3): 465 Copy Citation Text show less
    References

    [1] B. G. Gorshkov, K. Yüksel, A. A. Fotiadi. Scientific applications of distributed acoustic sensing: state-of-the-art review and perspective. Sensors, 22, 1033(2022).

    [2] Z. He, Q. Liu. Optical fiber distributed acoustic sensors: a review. J. Lightwave Technol., 39, 3671-3686(2021).

    [3] M. R. Fernández-Ruiz, M. A. Soto, E. F. Williams. Distributed acoustic sensing for seismic activity monitoring. APL Photon., 5, 030901(2020).

    [4] E. G. Bakhoum, C. Zhang, M. H. Cheng. Real time measurement of airplane flutter via distributed acoustic sensing. Aerospace, 7, 125(2020).

    [5] M.-F. Huang, M. Salemi, Y. Chen. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. J. Lightwave Technol., 38, 75-81(2019).

    [6] S. A. Aslangul. Detecting tunnels for border security based on fiber optical distributed acoustic sensor data using dbscan. Sensornets, 78-84(2020).

    [7] T. Komljenovic, D. Huang, P. Pintus. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE, 106, 2246-2257(2018).

    [8] T. Sharma, J. Wang, B. K. Kaushik. Review of recent progress on silicon nitride-based photonic integrated circuits. IEEE Access, 8, 195436-195446(2020).

    [9] W. Shi, Y. Tian, A. Gervais. Scaling capacity of fiber-optic transmission systems via silicon photonics. Nanophotonics, 9, 4629-4663(2020).

    [10] S. Yamanaka, Y. Ikuma, T. Itoh. Silicon photonics coherent optical subassembly with eo and oe bandwidths of over 50 GHz. Optical Fiber Communication Conference, Th4A–4(2020).

    [11] S. Yamanaka, Y. Nasu. Silicon photonics coherent optical subassembly for high-data-rate signal transmissions. Optical Fiber Communication Conference, Th5F–2(2021).

    [12] A. Li, C. Yao, J. Xia. Advances in cost-effective integrated spectrometers. Light Sci. Appl., 11, 174(2022).

    [13] E. A. Rank, R. Sentosa, D. J. Harper. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci. Appl., 10, 6(2021).

    [14] Y.-H. Lai, M.-G. Suh, Y.-K. Lu. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345-349(2020).

    [15] H. Li, Z. An, S. Zhang. Fully photonic integrated wearable optical interrogator. ACS Photon., 8, 3607-3618(2021).

    [16] Y. E. Marin, V. Toccafondo, P. Velha. Silicon photonic biochemical sensor on chip based on interferometry and phase-generated-carrier demodulation. IEEE J. Sel. Top. Quantum Electron., 25, 5200109(2018).

    [17] M. Słowikowski, A. Kaźmierczak, S. Stopiński. Photonic integrated interrogator for monitoring the patient condition during MRI diagnosis. Sensors, 21, 4238(2021).

    [18] J. Elaskar, F. Bontempi, P. Velha. Ultracompact microinterferometer-based fiber Bragg grating interrogator on a silicon chip. J. Lightwave Technol., 41, 4397-4404(2023).

    [19] M. C. Onbaşli. Photonic integrated circuit-assisted optical time-domain reflectometer system. Turkish J. Electr. Eng. Comput. Sci., 30, 579-591(2022).

    [20] V. Shishkin, K. Tanaka, H. Murayama. Proposal on miniaturization of distributed sensing system based on optical frequency domain reflectometry. Transdisciplinary Engineering for Complex Socio-technical Systems, 22-29(2019).

    [21] S. Y. Siew, B. Li, F. Gao. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [22] A. Rahim, T. Spuesens, R. Baets. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE, 106, 2313-2330(2018).

    [23] Q. Liu, X. Fan, Z. He. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range. Opt. Express, 23, 25988-25995(2015).

    [24] J. Beller, L. Shao. Acousto-optic modulators integrated on-chip. Light Sci. Appl., 11, 240(2022).

    [25] E. A. Kittlaus, W. M. Jones, P. T. Rakich. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photonics, 15, 43-52(2021).

    [26] D. Chen, Q. Liu, Z. He. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution. Opt. Express, 26, 16138-16146(2018).

    [27] J. Jiang, Z. Wang. Continuous chirped-wave phase-sensitive optical time-domain reflectometry: principles and demonstrations. 19th International Conference on Optical Communications and Networks (ICOCN), 1-3(2021).

    [28] A. Rahim, A. Hermans, B. Wohlfeil. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photon., 3, 024003(2021).

    [29] D. Patel, S. Ghosh, M. Chagnon. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express, 23, 14263-14287(2015).

    [30] S. Saha, R. Roy, S. Pal. Performance analysis of an electrostatic doping assisted dual parallel Mach-Zehnder modulator. Advances in Smart Communication Technology and Information Processing: OPTRONIX 2020, 47-57(2021).

    [31] K. Padmaraju, J. Chan, L. Chen. Thermal stabilization of a microring modulator using feedback control. Opt. Express, 20, 27999-28008(2012).

    [32] Y. Wakisaka, D. Iida, H. Oshida. Fading suppression of ϕ-OTDR with the new signal processing methodology of complex vectors across time and frequency domains. J. Lightwave Technol., 39, 4279-4293(2021).

    [33] H. Chen, B. Zhang, L. Hu. Thermo-optic-based phase-shifter power dither for silicon IQ optical modulator bias-control technology. Opt. Express, 27, 21546-21564(2019).

    [34] M. Ren, P. Lu, L. Chen. Theoretical and experimental analysis of ϕ-OTDR based on polarization diversity detection. IEEE Photon. Technol. Lett., 28, 697-700(2015).

    [35] L. Jia, C. Li, T.-Y. Liow. Efficient suspended coupler with loss less than −1.4 dB between Si-photonic waveguide and cleaved single mode fiber. J. Lightwave Technol., 36, 239-244(2017).

    [36] M. Ma, K. Murray, M. Ye. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. CLEO: Science and Innovations, STu4G–8(2016).

    [37] S. Faralli, G. Meloni, F. Gambini. A compact silicon coherent receiver without waveguide crossing. IEEE Photon. J., 7, 7802806(2015).

    [38] W. Yang, M. Yin, Y. Li. Ultra-compact optical 90 hybrid based on a wedge-shaped 2 × 4 mmi coupler and a 2 × 2 MMI coupler in silicon-on-insulator. Opt. Express, 21, 28423-28431(2013).

    [39] K. Voigt, L. Zimmermann, G. Winzer. C-band optical 90° hybrids in silicon nanowaveguide technology. IEEE Photon. Technol. Lett., 23, 1769-1771(2011).

    [40] D. Chen, Q. Liu, Z. He. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR. Opt. Express, 25, 8315-8325(2017).

    [41] D. Chen, Q. Liu, Z. He. Distributed fiber-optic acoustic sensor with sub-nano strain resolution based on time-gated digital OFDR. Asia Communications and Photonics Conference, S4A–2(2017).

    [42] P. Kaur, A. Boes, G. Ren. Hybrid and heterogeneous photonic integration. APL Photon., 6, 061102(2021).

    [43] S. Shekhar, W. Bogaerts, L. Chrostowski. Silicon photonics–roadmapping the next generation. arXiv(2023).

    [44] Y. Guo, X. Li, M. Jin. Hybrid integrated external cavity laser with a 172-nm tuning range. APL Photon., 7, 066101(2022).

    [45] K. Van Gasse, R. Wang, G. Roelkens. 27 db gain III–V-on-silicon semiconductor optical amplifier with >17  dBm output power. Opt. Express, 27, 293-302(2019).

    [46] W. Yan, Y. Yang, W. Yang. On-chip nonreciprocal photonic devices based on hybrid integration of magneto-optical garnet thin films on silicon. IEEE J. Sel. Top. Quantum Electron., 27, 6100515(2021).

    [47] Y. Liu, Z. Qiu, X. Ji. A photonic integrated circuit–based erbium-doped amplifier. Science, 376, 1309-1313(2022).

    [48] L. Fan, J. Wang, L. T. Varghese. An all-silicon passive optical diode. Science, 335, 447-450(2012).

    [49] M. Tan, K. Ye, D. Ming. Towards electronic-photonic-converged thermo-optic feedback tuning. J. Semicond., 42, 023104(2021).

    [50] H. Chen, B. Zhang, W. Ma. Study on auto bias control of a silicon optical modulator in a four-level pulse amplitude modulation format. Appl. Opt., 58, 3986-3994(2019).

    [51] M. Ma, H. Shoman, K. Tang. Automated control algorithms for silicon photonic polarization receiver. Opt. Express, 28, 1885-1896(2020).

    [52] Y. Fu, N. Xue, Z. Wang. Impact of I/Q amplitude imbalance on coherent ϕ-OTDR. J. Lightwave Technol., 36, 1069-1075(2018).

    [53] N. Xue, Y. Fu, C. Lu. Characterization and compensation of phase offset in ϕ-OTDR with heterodyne detection. J. Lightwave Technol., 36, 5481-5487(2018).

    Zhicheng Jin, Jiageng Chen, Yanming Chang, Qingwen Liu, Zuyuan He. Silicon photonic integrated interrogator for fiber-optic distributed acoustic sensing[J]. Photonics Research, 2024, 12(3): 465
    Download Citation