• Laser & Optoelectronics Progress
  • Vol. 53, Issue 7, 70403 (2016)
Lu Huidong*, Tie Shengnian, and Liu Jie
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.070403 Cite this Article Set citation alerts
    Lu Huidong, Tie Shengnian, Liu Jie. Simulation of Enhancing Light Trapping in Crystalline Silicon Thin Film Solar Cells with Diffraction Gratings and Photonic Crystals[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70403 Copy Citation Text show less
    References

    [1] Green M A, Keevers M J. Optical properties of intrinsic silicon at 300 K[J]. Progress in Photovoltaics: Research and Applications, 1995, 3(3): 189-192.

    [2] Chhajed S, Schubert M F, Kim J K, et al.. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Appl Phys Lett, 2008, 93(25): 251108.

    [3] Liang Zhaoming, Wu Yonggang, Xia Zihuan, et al.. Influence of front and back grating period on light trapping of dual-grating structure thin film solar cell[J]. Acta Phys Sin, 2014, 63(19): 198801.

    [4] Lee Y C, Tseng S C, Chen H L, et al.. Using autocloning effects to develop broad-bandwidth, omnidirectional antireflection structures for silicon solar cells[J]. Optics Express, 2010, 18(s3): A421-A431.

    [5] Trompoukis C. Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells[J]. Phys Status Solidi, 2015, 212(1): 140-155.

    [6] Liu C H, Su G Y, Gou F W, et al.. Absorption enhancement of thin film solar cells using back binary metallic grating[J]. Opt Quant Electron, 2014, 46(10): 1365-1372.

    [7] Tseng P C, Yu P C, Chena H C, et al.. Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2610-2615.

    [8] Zheng G G, Xian F L, Li X Y. Enhancement of light absorption in thin film silicon solar cells with metallic grating and one-dimensional photonic crystals[J]. Chin Phys Lett, 2011, 28(5): 054213.

    [9] Zeng L, Yi Y, Hong C Y, et al.. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Appl Phys Lett, 2006, 89(11): 111111.

    [10] Bermel P, Luo C Y, Zeng L R, et al.. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J].Optics Express, 2007, 15(25): 16986-17000.

    [11] Zhou D Y, Biswas R. Photonic crystal enhanced light-trapping in thin film solar cells[J]. J Appl Phys, 2008, 103(9): 093102.

    [12] Chutinan A, Kherani N P, Zukotynski S. High-efficiency photonic crystal solar cell architecture[J]. Optics Express, 2009, 17(11): 8871-8878.

    [13] Philipp H R. Optical properties of silicon nitride[J]. J Electrochemical Society, 1973, 120(2): 295-300.

    [14] Devore J R. Refractive indices of rutile and sphalerite[J]. J Opt Soc Am, 1951, 41(6): 416-419.

    [15] Malitson I H. Interspecimen comparison of the refractive index of fused silica[J]. J Opt Soc Am, 1965, 55(10): 1205-1208.

    [16] Li Guolong, Li Jin. The light absorption enhancement in polymer solar cells with periodic nano-structures gratings[J]. Acta Phys Sin, 2012, 61(20): 207204.

    [17] Zhu L H, Shao M R, Peng R W, et al.. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal[J]. Optics Express, 2013, 21(S3): A313-A323.

    [18] Green M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients[J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305-1310.

    Lu Huidong, Tie Shengnian, Liu Jie. Simulation of Enhancing Light Trapping in Crystalline Silicon Thin Film Solar Cells with Diffraction Gratings and Photonic Crystals[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70403
    Download Citation