• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 6, 751 (2021)
Junhua CHEN1、*, Hao WANG1, Yang ZHENG1, Wanying CHENG1, Weixing LI2, Xuefang XU1, and Qian GOU1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.06.003 Cite this Article
    CHEN Junhua, WANG Hao, ZHENG Yang, CHENG Wanying, LI Weixing, XU Xuefang, GOU Qian. Rotational spectroscopic studies on intermolecular σ-hole and π-hole non-covalent interactions[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 751 Copy Citation Text show less
    References

    [1] Schneider H J. Binding mechanisms in supramolecular complexes [J]. Angewandte Chemie International Edition, 2009, 48(22): 3924-3977.

    [2] Scheiner S. Steric crowding in tetrel bonds [J]. The Journal of Physical Chemistry A, 2018, 122(9): 2550-2562.

    [3] Mundlapati V R, Sahoo D K, Bhaumik S, et al. Noncovalent carbon-bonding interactions in proteins [J]. Angewandte Chemie International Edition, 2018, 57(50): 16496-16500.

    [4] Chen J H, Zheng Y, Wang J, et al. Weak hydrogen bond topology in 1, 1-difluoroethane dimer: A rotational study [J]. The Journal of Chemical Physics, 2017, 147(9): 094301.

    [5] Wang H, Chen J H, Duan C, et al. Switching aromatic character by complexation: π to π* change seen in molecular rotation spectra [J]. The Journal of Physical Chemistry Letters, 2021, 12(21): 5150-5155.

    [6] Chen J H, Zheng Y, Melli A, et al. Theory meets experiment for elucidating the structure and stability of non-covalent complexes: Water-amine interaction as a proof of concept [J]. Physical Chemistry Chemical Physics, 2020, 22(9): 5024-5032.

    [7] Chen C Y, Zhang Z F, Jin S C, et al. Enzyme-inspired chiral secondary-phosphine-oxide ligand with dual noncovalent interactions for asymmetric hydrogenation [J]. Angewandte Chemie, 2017, 129(24): 6912-6916.

    [8] Ushakov I E, Goloveshkin A S, Lenenko N D, et al. Hydrogen bond-driven self-assembly between single-layer MoS2 and alkyldiamine molecules [J]. Crystal Growth & Design, 2018, 18(9): 5116-5123.

    [9] Zheng X X, Zhang L, Li J Y, et al. Magnetic nanoparticle supported polyoxometalates (POMs) via non-covalent interaction: Reusable acid catalysts and catalyst supports for chiral amines [J]. Chemical Communications, 2011, 47(45): 12325-12327.

    [10] Paton R S. Dissecting non-covalent interactions in oxazaborolidinium catalyzed cycloadditions of maleimides [J]. Organic & Biomolecular Chemistry, 2014, 12(11): 1717-1720.

    [11] Clark T, Hennemann M, Murray J S, et al. Halogen bonding: The σ-hole [J]. Journal of Molecular Modeling, 2007, 13(2): 291-296.

    [12] Wolters L P, Schyman P, Pavan M J, et al. The many faces of halogen bonding: A review of theoretical models and methods [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4(6): 523-540.

    [13] Bauzá A, Mooibroek T J, Frontera A. Tetrel bonding interactions [J]. The Chemical Record, 2016, 1(1): 473-487.

    [14] Biczysko M, Bloino J, Puzzarini C. Computational challenges in astrochemistry [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8(3): e1349.

    [15] Puzzarini C, Bloino J, Tasinato N, et al. Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy [J]. Chemical Reviews, 2019, 119(13): 8131-8191.

    [16] Grimme S. Density functional theory with London dispersion corrections [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1(2): 211-228.

    [17] Grimme S, Hansen A, Brandenburg J G, et al. Dispersion-corrected mean-field electronic structure methods [J]. Chemical Reviews, 2016, 11(9): 5105-5154.

    [18] Remya K, Suresh C H. Intermolecular carbon-carbon, nitrogen-nitrogen and oxygen-oxygen non-covalent bonding in dipolar molecules [J]. Physical Chemistry Chemical Physics, 2015, 17(28): 18380-18392.

    [19] Shukla R, Chopra D. Characterization of NO non-covalent interactions involving σ-holes: “electrostatics" or “dispersion" [J]. Physical Chemistry Chemical Physics, 2016, 18(43): 29946-29954.

    [20] Chen J H, Wang H, Kisiel Z, et al. Hydrogen versus tetrel bonds in complexes of 3-oxetanone with water and formaldehyde [J]. Physical Chemistry Chemical Physics, 2021, 23(12): 7295-7301.

    [21] Ingham B. X-ray scattering characterisation of nanoparticles [J]. Crystallography Reviews, 2015, 21(4): 229-303.

    [22] Andreev K. The structural role of gangliosides: Insights from X-ray scattering on model membranes [J]. Current Medicinal Chemistry, 2020, 27(38): 6548-6570.

    [23] Czarnecki M A, Morisawa Y, Futami Y, et al. Advances in molecular structure and interaction studies using near-infrared spectroscopy [J]. Chemical Reviews, 2015, 115(18): 9707-9744.

    [24] López-Lorente  I, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: Potential and challenges [J]. Analytical and Bioanalytical Chemistry, 2016, 408(11): 2875-2889.

    [25] Lei X, Kong X T, Zhao Z, et al. Infrared photodissociation spectroscopy of ion-radical networks in cationic dimethylamine complexes [J]. Physical Chemistry Chemical Physics, 2018, 20(48): 30125-30132.

    [26] Zimmermann N, Bernhardt T M, Bakker J M, et al. Infrared photodissociation spectroscopy of di-manganese oxide cluster cations [J]. Physical Chemistry Chemical Physics, 2019, 21(43): 23922-23930.

    [27] Brichtová E, Hudecová J, Vrková N, et al. Binding of lanthanide complexes to histidine-containing peptides probed by Raman optical activity spectroscopy [J]. Chemistry-A European Journal, 2018, 24(34): 8664-8669.

    [28] Ariunbold G O, Semon B, Nagpal S, et al. Coherent anti-Stokes-Stokes Raman cross-correlation spectroscopy: Asymmetric frequency shifts in hydrogen-bonded pyridine-water complexes [J]. Applied Spectroscopy, 2019, 73(9): 1099-1106.

    [29] Becucci M, Melandri S. High-resolution spectroscopic studies of complexes formed by medium-size organic molecules [J]. Chemical Reviews, 2016, 11(9): 5014-5037.

    [30] Madl T, Gabel F, Sattler M. NMR and small-angle scattering-based structural analysis of protein complexes in solution [J]. Journal of Structural Biology, 2011, 173(3): 472-482.

    [31] Wilkin O M, Harris N, Rooms J F, et al. How inert, perturbing, or interacting are cryogenic matrices? A combined spectroscopic (infrared, electronic, and X-ray absorption) and DFT investigation of matrix-isolated iron, cobalt, nickel, and zinc dibromides [J]. The Journal of Physical Chemistry A, 2018, 122(8): 1994-2029.

    [32] Steiner T. The hydrogen bond in the solid state [J]. Angewandte Chemie International Edition, 2002, 41(1): 48-76.

    [33] Zhang J, Chen P, Yuan B, et al. Real-space identification of intermolecular bonding with atomic force microscopy [J]. Science, 2013, 342(6158): 611-614.

    [34] Dian B C, Brown G G, Douglass K O, et al. Measuring picosecond isomerization kinetics via broadband microwave spectroscopy [J]. Science, 2008, 320(5878): 924-928.

    [35] Pérez C, Muckle M T, Zaleski D P, et al. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy [J]. Science, 2012, 33(6083): 897-901.

    [36] Crabtree K N, Talipov M R, Martinez O, et al. Detection and structure of HOON: Microwave spectroscopy reveals an O-O bond exceeding 1.9  [J]. Science, 2013, 342(6164): 1354-1357.

    [37] MacKenzie R B, Dewberry C T, Leopold K R. Gas phase observation and microwave spectroscopic characterization of formic sulfuric anhydride [J]. Science, 2015, 349(6243): 58-61.

    [38] Chen J H, Wang J, Zheng Y, et al. Halogen bond in the water adduct of chloropentafluoroethane revealed by rotational spectroscopy [J]. The Journal of Chemical Physics, 2018, 149(15): 154307.

    [39] Strandberg M W P, Meng C Y, Ingersoll J G. The microwave absorption spectrum of oxygen [J]. Physical Review, 1949, 75(10): 1524-1528.

    [40] Li W X, Evangelisti L, Gou Q, et al. The barrier to proton transfer in the dimer of formic acid: A pure rotational study [J]. Angewandte Chemie International Edition, 2019, 58(3): 859-865.

    [41] Hughes R H, Wilson Jr E B. A microwave spectrograph [J]. Physical Review, 1947, 71(8): 562-563.

    [42] McAfee Jr K B, Hughes R H, Wilson Jr E B. A Stark-effect microwave spectrograph of high sensitivity [J]. Review of Scientific Instruments, 1949, 20(11): 821-826.

    [43] Cleeton C E, Williams N H. Electromagnetic waves of 1.1 cm wave-length and the absorption spectrum of ammonia [J]. Physical Review, 1934, 45(4): 234-237.

    [44] Balle T J, Campbell E J, Keenan M R, et al. A new method for observing the rotational spectra of weak molecular complexes: KrHCl [J]. The Journal of Chemical Physics, 1980, 72(2): 922-932.

    [45] Balle T J, Flygare W H. Fabry-Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source [J]. Review of Scientific Instruments, 1981, 52(1): 33-45.

    [46] Brown G G, Dian B C, Douglass K O, et al. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation [J]. Review of Scientific Instruments, 2008, 79(5): 053103.

    [47] Grabow J U, Stahl W. A pulsed molecular beam microwave Fourier transform spectrometer with parallel molecular beam and resonator axes [J]. Zeitschrift für Naturforschung A, 1990, 45(8): 1043-1044.

    [48] Brinck T, Murray J S, Politzer P. Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions [J]. International Journal of Quantum Chemistry, 1992, 44(S19): 57-64.

    [49] Politzer P, Murray J S, Clark T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction [J]. Physical Chemistry Chemical Physics, 2010, 12(28): 7748-7757.

    [50] Murray J S, Lane P, Politzer P. A predicted new type of directional noncovalent interaction [J]. International Journal of Quantum Chemistry, 2007, 107(12): 2286-2292.

    [51] Shields Z P, Murray J S, Politzer P. Directional tendencies of halogen and hydrogen bonds [J]. International Journal of Quantum Chemistry, 2010, 110(15): 2823-2832.

    [52] Murray J S, Lane P, Clark T, et al. σ-hole bonding: Molecules containing group VI atoms [J]. Journal of Molecular Modeling, 2007, 13(10): 1033-1038.

    [53] Juanes M, Saragi R T, Caminati W, et al. The hydrogen bond and beyond: Perspectives for rotational investigations of non-covalent interactions [J]. Chemistry-A European Journal, 2019, 25(49): 11402-11411.

    [54] LaBarge M S, Andrews A M, Taleb-Bendiab A, et al. Microwave spectrum, structure, and dipole moment of the phosphorus trifluoride-water complex [J]. The Journal of Physical Chemistry, 1991, 95(9): 3523-3527.

    [55] Cooke S A, Cotti G, Evans C M, et al. Pre-reactive complexes in mixtures of water vapour with halogens: Characterisation of H2O…ClF and H2O…F2 by a combination of rotational spectroscopy and ab initio calculations [J]. Chemistry-A European Journal, 2001, 7(11): 2295-2305.

    [56] Bloemink H I, Hinds K, Holloway J H, et al. Characterisation of a pre-reactive intermediate in gas-phase mixtures of fluorine and ammonia: The rotational spectrum of the H3N…F2 complex [J]. Chemical Physics Letters, 1995, 245(6): 598-604.

    [57] Cotti G, Cooke S A, Evans C M, et al. A complex of molecular fluorine with an organic compound detected in the gas phase: The rotational spectrum of CH3CN…F2 [J]. Chemical Physics Letters, 1996, 260(3): 388-394.

    [58] Evans C M, Holloway J H, Legon A C. Rotational spectrum and angular geometry of a pre-reactive complex of oxirane and F2 [J]. Chemical Physics Letters, 1997, 267(3): 281-287.

    [59] Cotti G, Evans C M, Holloway J H, et al. Rotational spectroscopy of a pre-reactive mixture of H2S and F2: Detection and characterisation of the weakly bound complex H2S…F2 [J]. Chemical Physics Letters, 1997, 264(5): 513-521.

    [60] Legon A C, Warner H E. Isolation of stable intermediates in reactive gas mixtures: Rotational spectrum of H3P…Cl2 in a pulsed jet [J]. The Journal of Chemical Physics, 1993, 98(5): 3827-3832.

    [61] Legon A C, Thorn J C. Identification and characterisation of the gas-phase complex HCN…Cl2 by rotational spectroscopy [J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89(23): 4157-4162.

    [62] Legon A C, Lister D G, Thorn J C. Non-reactive interaction of ammonia and molecular chlorine: Rotational spectrum of the ‘charge-transfer’ complex H3N…Cl2 [J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(21): 3205-3212.

    [63] Bloemink H I, Hinds K, Legon A C, et al. Properties of the intermediate ethyne…Cl2 from its rotational spectrum and some generalisations for a series B…Cl2 [J]. Chemical Physics Letters, 1994, 223(3): 162-166.

    [64] Bloemink H I, Hinds K, Legon A C, et al. Can the pre-equilibrium molecular complex in a reactive mixture of ethene and chlorine be characterised?: An answer from rotational spectroscopy [J]. Journal of the Chemical Society, Chemical Communications, 1994, 11: 1321-1322.

    [65] Davey J B, Legon A C. A gas phase complex of acetylene and bromine: Geometry, binding strength and charge transfer from rotational spectroscopy [J]. Chemical Physics Letters, 2001, 350(1): 39-50.

    [66] Bloemink H I, Hinds K, Legon A C, et al. Pre-reactive intermediates in mixtures of hydrocarbons with chlorine monofluoride: Characterisation of ethyne…ClF and ethene…ClF by rotational spectroscopy [J]. Journal of the Chemical Society, Chemical Communications, 1995, 18: 1833-1834.

    [67] Bloemink H I, Hinds K, Holloway J H, et al. Isolation of H2S…ClF in a pre-reactive mixture of H2S and ClF expanded in a coaxial jet and characterisation by rotational spectroscopy [J]. Chemical Physics Letters, 1995, 242(1): 113-120.

    [68] Hinds K, Legon A C. The geometry and intermolecular binding of HCN…BrCl probed by rotational spectroscopy [J]. Chemical Physics Letters, 1995, 240(5): 467-473.

    [69] Davey J B, Legon A C, Waclawik E R. Electric charge redistribution in BrCl resulting from interaction with Ar: The rotational spectrum of the linear complex Ar…BrCl [J]. Chemical Physics Letters, 2001, 34(1): 103-111.

    [70] Davey J B, Legon A C, Waclawik E R. Iodine and chlorine nuclear quadrupole coupling in the rotational spectra of Ar…ICl and ICl: Intramolecular charge transfer induced in ICl by Ar [J]. Chemical Physics Letters, 1999, 30(3): 133-144.

    [71] Legon A C, Waclawik E R. Angular geometry, binding strength and charge transfer for the complex H2S…ICl determined by rotational spectroscopy [J]. Chemical Physics Letters, 1999, 312(5): 385-393.

    [72] Davey J B, Legon A C, Waclawik E R. Inter-and intramolecular electron transfer in the complex OC…ICl determined from iodine and chlorine nuclear quadrupole hyperfine structure in its rotational spectrum [J]. Physical Chemistry Chemical Physics, 1999, 1(13): 3097-3101.

    [73] Davey J B, Legon A C. Rotational spectroscopy of mixtures of ethyne and iodine monochloride: Isolation and characterisation of the π-type complex C2H2…ICl [J]. Physical Chemistry Chemical Physics, 1999, 1(16): 3721-3726.

    [74] Thumwood J M A, Legon A C. A π-electron donor-acceptor complex of ethene and iodine monochloride: Geometry, binding strength and charge redistribution determined by rotational spectroscopy [J]. Chemical Physics Letters, 1999, 310(1): 88-96.

    [75] Waclawik E R, Legon A C. Halogen nuclear quadrupole coupling in the rotational spectrum of H3N…ICl as a probe of inter-and intramolecular charge transfer [J]. Physical Chemistry Chemical Physics, 1999, 1(20): 4695-4700.

    [76] Herrebout W A, Legon AC, Waclawik E R. Is there significant intermolecular charge transfer in the ground state of the HCN…ICI complex? An answer from rotational spectroscopy [J]. Physical Chemistry Chemical Physics, 1999, 1(21): 4961-4966.

    [77] Davey J B, Legon A C, Waclawik E R. An investigation of the gas-phase complex of water and iodine monochloride by microwave spectroscopy: Geometry, binding strength and electron redistribution [J]. Physical Chemistry Chemical Physics, 2000, 2(8): 1659-1665.

    [78] Davey J B, Legon A C, Waclawik E R. Inter-and intramolecular electronic transfer on formation of H3P…ICl as determined by rotational spectroscopy [J]. Physical Chemistry Chemical Physics, 2000, 2(10): 2265-2269.

    [79] Davey J B, Legon A C, Waclawik E R. Measurement of inter- and intramolecular charge transfer in the complex N2…ICl from analysis of halogen nuclear quadrupole hyperfine structure in the rotational spectrum [J]. Journal of Molecular Structure: THEOCHEM, 2000, 500(1): 403-411.

    [80] Legon A C. Angular and radial geometries, charge transfer and binding strength in isolated complexes B…ICl: Some generalisations [J]. Chemical Physics Letters, 1999, 314(5): 472-480.

    [81] Legon A C. Mulliken n.aσ and bπ.aσ complexes B…Cl2 in the gas phase: Rules for predicting angular geometries and nature of the interaction [J]. Chemical Physics Letters, 1995, 237(3): 291-298.

    [82] Evangelisti L, Feng G, cija P, et al. The halogen bond and internal dynamics in the molecular complex of CF3Cl and H2O [J]. Angewandte Chemie International Edition, 2011, 50(34): 7807-7810.

    [83] Gou Q, Feng G, Evangelisti L, et al. Internal dynamics in halogen-bonded adducts: A rotational study of chlorotrifluoromethane-formaldehyde [J]. Chemistry-A European Journal, 2015, 21(10): 4148-4152.

    [84] Evangelisti L, Feng G, Gou Q, et al. Halogen bond and free internal rotation: The microwave spectrum of CF3Cl-dimethyl ether [J]. The Journal of Physical Chemistry A, 2014, 118(3): 579-582.

    [85] Feng G, Evangelisti L, Gasparini N, et al. On the Cl…N halogen bond: A rotational study of CF3Cl…NH3 [J]. Chemistry-A European Journal, 2012, 18(5): 1364-1368.

    [86] Gou Q, Vallejo López M, Spada L, et al. Halogen bond and internal dynamics in the σ-complex of pyridine-chlorotrifluoromethane: A rotational study [J]. Journal of Molecular Spectroscopy, 2020, 371: 111323.

    [87] Gou Q, Spada L, Cocinero E J, et al. Halogen-halogen links and internal dynamics in adducts of freons [J]. The Journal of Physical Chemistry Letters, 2014, 5(9): 1591-1595.

    [88] Caminati W, Evangelisti L, Feng G, et al. On the Cl…C halogen bond: A rotational study of CF3Cl-CO [J]. Physical Chemistry Chemical Physics, 2016, 18(27): 17851-17855.

    [89] Stephens S L, Walker N R, Legon A C. Rotational spectra and properties of complexes B…ICF3 (B=Kr or CO) and a comparison of the efficacy of ICl and ICF3 as iodine donors in halogen bond formation [J]. The Journal of Chemical Physics, 2011, 135(22): 224309.

    [90] Anable J P, Hird D E, Stephens S L, et al. Characterisation of the weak halogen bond in N2…ICF3 by pure rotational spectroscopy [J]. Chemical Physics Letters, 2015, 625: 179-185.

    [91] Stephens S L, Walker N R, Legon A C. Internal rotation and halogen bonds in CF3I…NH3 and CF3I…N(CH3)3 probed by broadband rotational spectroscopy [J]. Physical Chemistry Chemical Physics, 2011, 13(46): 20736-20744.

    [92] Stephens S L, Walker N R, Legon A C. Molecular geometries of H2S…ICF3 and H2O…ICF3 characterised by broadband rotational spectroscopy [J]. Physical Chemistry Chemical Physics, 2011, 13(47): 21093-21101.

    [93] Stephens S L, Mizukami W, Tew D P, et al. The halogen bond between ethene and a simple perfluoroiodoalkane: C2H4…ICF3 identified by broadband rotational spectroscopy [J]. Journal of Molecular Spectroscopy, 2012, 280: 47-53.

    [94] Millen D J. Determination of stretching force constants of weakly bound dimers from centrifugal distortion constants [J]. Canadian Journal of Chemistry, 1985, 63(7): 1477-1479.

    [95] Read W G, Campbell E J, Henderson G. The rotational spectrum and molecular structure of the benzene-hydrogen chloride complex [J]. The Journal of Chemical Physics, 1983, 78(6): 3501-3508.

    [96] Geboes Y, De Vleeschouwer F, De Proft F, et al. Exploiting the σ-hole concept: An infrared and raman-based characterization of the S…O chalcogen bond between 2,2,4,4-tetrafluoro-1,3-dithiethane and dimethyl ether [J]. Chemistry-A European Journal, 2017, 23(68): 17384-17392.

    [97] Lu T, Zheng Y, Gou Q, et al. Rotational characterization of S…F chalcogen bonds in the complex of 2,2,4,4-tetrafluoro-1,3-dithietane and difluoromethane [J]. Physical Chemistry Chemical Physics, 2019, 21(44): 24659-24665.

    [98] Jin Y, Li X, Gou Q, et al. Chalcogen bond and internal dynamics of the 2,2,4,4-tetrafluoro-1,3-dithietanewater complex [J]. Physical Chemistry Chemical Physics, 2019, 21(28): 15656-15661.

    [99] Li X, Lengsfeld K G, Buschmann P, et al. The 2,2,4,4-tetrafluoro-1,3-dithietane…NH3 complex: A rotational study reveals a N…σ-hole interaction [J]. Journal of Molecular Spectroscopy, 2021, 376: 111409.

    [100] Bittner D M, Zaleski D P, Stephens S L, et al. The σ-hole interaction between sulfur hexafluoride and ammonia characterised by broadband rotational spectroscopy [J]. ChemPhysChem, 2015, 1(12): 2630-2634.

    [101] Legon A C. Tetrel, pnictogen and chalcogen bonds identified in the gas phase before they had names: A systematic look at non-covalent interactions [J]. Physical Chemistry Chemical Physics, 2017, 19(23): 14884-14896.

    [102] Mani D, Arunan E. The X-C…Y (X = O/F, Y = O/S/F/Cl/Br/N/P) ‘carbon bond’ and hydrophobic interactions [J]. Physical Chemistry Chemical Physics, 2013, 15(34): 14377-14383.

    [103] Caminati W, Maris A, Dell’Erba A, et al. Dynamical behavior and dipole-dipole interactions of tetrafluoromethane-water [J]. Angewandte Chemie International Edition, 2006, 45(40): 6711-6714.

    [104] Evangelisti L, Feng G, Gou Q, et al. Orientation of the water moiety in CF4-H2O [J]. Journal of Molecular Spectroscopy, 2012, 282: 39-41.

    [105] Gou Q, Feng G, Evangelisti L, et al. Rotational spectrum of the tetrafluoromethane-ethylene oxide [J]. Journal of Molecular Spectroscopy, 2017, 335: 84-87.

    [106] Maris A, Favero L B, Velino B, et al. Pyridine-CF4: A molecule with a rotating cap [J]. The Journal of Physical Chemistry A, 2013, 117(44): 11289-11292.

    [107] Heywood V L, Alford T P J, Roeleveld J J, et al. Observations of tetrel bonding between sp3-carbon and THF [J]. Chemical Science, 2020, 11(20): 5289-5293.

    [108] Gou Q, Feng G, Evangelisti L, et al. Lone-pair…π interaction: A rotational study of the chlorotrifluoroethylene-water adduct [J]. Angewandte Chemie International Edition, 2013, 52(45): 11888-11891.

    [109] Gou Q, Spada L, Geboes Y, et al. N lone-pair…π interaction: A rotational study of chlorotrifluoroethylene…ammonia [J]. Physical Chemistry Chemical Physics, 2015, 17(12): 7694-7698.

    [110] Spada L, Gou Q, Geboes Y, et al. Rotational study of dimethyl ether-chlorotrifluoroethylene: Lone pair…π interaction links the two subunits [J]. The Journal of Physical Chemistry A, 2016, 120(27): 4939-4943.

    [111] Evangelisti L, Brendel K, Mader H, et al. Rotational spectroscopy probes water flipping by full fluorination of benzene [J]. Angewandte Chemie International Edition, 2017, 5(44): 13699-13703.

    [112] Li W, Usabiaga I, Calabrese C, et al. Characterizing the lone pair…π-hole interaction in complexes of ammonia with perfluorinated arenes [J]. Physical Chemistry Chemical Physics, 2021, 23(15): 9121-9129.

    [113] Calabrese C, Gou Q, Maris A, et al. Probing the lone pair…π-hole interaction in perfluorinated heteroaromatic rings: The rotational spectrum of pentafluoropyridine·water [J]. The Journal of Physical Chemistry Letters, 2016, 7(8): 1513-1517.

    [114] Zhang J X, Sheong F K, Lin Z Y. Unravelling chemical interactions with principal interacting orbital analysis [J]. Chemistry-A European Journal, 2018, 24(38): 9639-9650.

    [115] Cheng W Y, Zheng Y, Herbers S, et al. Conformational equilibria of 2-methoxypyridine…CO2: Cooperative and competitive tetrel and weak hydrogen bonds [J]. ChemPhysChem, 2021, 22(2): 154-159.

    [116] Fraser G T, Pine A S, Suenram R D, et al. Infrared and microwave spectra of OCO-HF and SCO-HF [J]. The Journal of Chemical Physics, 1989, 90(3): 1330-1336.

    [117] Altman R S, Marshall M D, Klemperer W. The microwave spectrum and molecular structure of CO2-HCl [J]. The Journal of Chemical Physics, 1982, 77(9): 4344-4349.

    [118] Rice J K, Lovas F J, Fraser G T, et al. Pulsed-nozzle Fourier-transform microwave investigation of the large-amplitude motions in HBr-CO2 [J]. The Journal of Chemical Physics, 1995, 103(10): 3877-3884.

    [119] Gao S, Obenchain D A, Lei J, et al. Tetrel bonds and conformational equilibria in the formamide-CO2 complex: A rotational study [J]. Physical Chemistry Chemical Physics, 2019, 21(13): 7016-7020.

    [120] Blake T A, Novick S E, Lovas F J, et al. Determination of the structure of CO2-H2CO [J]. Journal of Molecular Spectroscopy, 1992, 154(1): 72-82.

    [121] Vigorito A, Gou Q, Calabrese C, et al. How CO2 interacts with carboxylic acids: A rotational study of formic acid-CO2 [J]. ChemPhysChem, 2015, 1(14): 2961-2967.

    [122] Caminati W, López J C, Blanco S, et al. How water links to cis and trans peptidic groups: The rotational spectrum of N-methylformamide-water [J]. Physical Chemistry Chemical Physics, 2010, 12(35): 10230-10234.

    [123] Bader R F W. A quantum theory of molecular structure and its applications [J]. Chemical Reviews, 1991, 91(5): 893-928.

    [124] Clark T. Interaction of radicals with σ-holes [J]. The Journal of Physical Chemistry A, 2019, 123(15): 3326-3333.

    [125] Ngar1 M S, Xu Y, Jger W. Rotational spectroscopic investigation of the weak interaction between CO and N2O [J]. Journal of Molecular Spectroscopy, 1999, 197(2): 244-253.

    [126] Peebles R A, Peebles S A, Kuczkowski R L, et al. Isotopic studies, structure and modeling of the nitrous oxide-acetylene complex [J]. The Journal of Physical Chemistry A, 1999, 103(50): 10813-10818.

    [127] Leung H O, Cashion W T, Duncan K K, et al. Nuclear quadrupole hyperfine structure in the microwave spectrum of HCl-N2O: Electric field gradient perturbation of N2O by HCl [J]. The Journal of Chemical Physics, 2004, 121(1): 237-247.

    [128] Leung H O, Ibidapo O M, Abrua P I, et al. Nuclear hyperfine coupling interactions in the rotational spectra of the linear and bent isomers of HF-N2O [J]. Journal of Molecular Spectroscopy, 2003, 222(1): 3-14.

    [129] Zolandz D, Yaron D, Peterson K I, et al. Water in weak interactions: The structure of the water-nitrous oxide complex [J]. The Journal of Chemical Physics, 1992, 97(5): 2861-2868.

    [130] Fraser G T, Nelson Jr D D, Gerfen G J, et al. The rotational spectrum, barrier to internal rotation, and structure of NH3-N2O [J]. The Journal of Chemical Physics, 1985, 83(11): 5442-5449.

    [131] Blanco S, Loópez J C. Rotational characterization of an n→π* interaction in a pyridine-formaldehyde adduct [J]. The Journal of Physical Chemistry Letters, 2018, 9(16): 4632-4637.

    [132] Blanco S, Macario A, López J C. Pyridine-acetaldehyde, a molecular balance to explore the n→π* interaction [J]. Physical Chemistry Chemical Physics, 2019, 21(37): 20566-20570.

    [133] Wang H, Wang J, Chen J H, et al. Competitive and cooperative n→π* and n→σ* interactions in benzaldehyde-formaldehyde: Rotational characterization [J]. Physical Chemistry Chemical Physics, 2021, 23(14): 8778-8783.

    [134] Chen J H, Wang H, Kisiel Z, et al. Hydrogen versus tetrel bonds in complexes of 3-oxetanone with water and formaldehyde [J]. Physical Chemistry Chemical Physics, 2021, 23(12): 7295-7301.

    [135] Kraitchman J. Determination of molecular structure from microwave spectroscopic data [J]. American Journal of Physics, 1953, 21(1): 17-24.

    [136] Pérez C, Neill J L, Muckle M T, et al. Water-water and water-solute interactions in microsolvated organic complexes [J]. Angewandte Chemie, 2015, 127(3): 993-996.

    [137] Li W, Quesada-Moreno M M, Pinacho P, et al. Unlocking the water trimer loop: Isotopic study of benzophenone-(H2O)1-3 clusters with rotational spectroscopy [J]. Angewandte Chemie International Edition, 2021, 60(10): 5323-5330.

    [138] Li W, Spada L, Tasinato N, et al. Theory meets experiment for noncovalent complexes: The puzzling case of pnicogen Interactions [J]. Angewandte Chemie-International Edition, 2018, 57(42): 13853-13857.

    [139] Aakeroy C B, Bryce D L, Desiraju G R, et al. Definition of the chalcogen bond (IUPAC Recommendations 2019) [J]. Pure and Applied Chemistry, 2019, 91(11): 1889-1892.

    [140] Matsumura K, Lovas F, Suenram R D. The microwave spectrum and structure of the H2O-SO2 complex [J]. The Journal of Chemical Physics, 1989, 91: 5887-5894.

    [141] Sun L, Tan X Q, Oh J J, et al. The microwave spectrum and structure of the methanol·SO2 complex [J]. The Journal of Chemical Physics, 1995, 103(15): 6440-6449.

    [142] Oh J J, LaBarge M S, Matos J, et al. Structure of the trimethylamine-sulfur dioxide complex [J]. Journal of the American Chemical Society, 1991, 113(13): 4732-4738.

    [143] Lovas F J, Sprague M K. Microwave rotational spectral study of SO2-CO [J]. Journal of Molecular Spectroscopy, 2015, 316: 49-53.

    [144] Andrews A M, Hillig K W, Kuczkowski R L, et al. Microwave spectrum, structure, dipole moment, and deuterium nuclear quadrupole coupling constants of the acetylene-sulfur dioxide van der Waals complex [J]. The Journal of Chemical Physics, 1991, 94(11): 6947-6955.

    [145] Tan X Q, Xu L W, Tubergen M J, et al. The microwave spectrum, structure, and large amplitude motions of the methylacetylene·SO2 complex [J]. The Journal of Chemical Physics, 1994, 101(8): 6512-6522.

    [146] Xu L W, Kuczkowski R L. Structure of the propene·sulfur dioxide complex [J]. The Journal of Chemical Physics, 1994, 100(1): 15-22.

    [147] Xu L W, Taleb-Bendiab A, Nemes L, et al. The microwave spectrum, structure, and dipole moment of the butadiene-sulfur dioxide complex [J]. Journal of the American Chemical Society, 1993, 115(13): 5723-5728.

    [148] Taleb-Bendiab A, Hillig K W, Kuczkowski R L. Microwave spectrum of benzene·SO2: Barrier to internal rotation, structure, and dipole moment [J]. The Journal of Chemical Physics, 1992, 97(5): 2996-3006.

    [149] Taleb-Bendiab A, Hillig K W, Kuczkowski R L. Microwave spectrum of toluene·SO2: Structure, barrier to internal rotation, and dipole moment [J]. The Journal of Chemical Physics, 1993, 98(5): 3627-3636.

    [150] Oh J J, Xu L-W, Taleb-Bendiab A, et al. The microwave spectrum and structure of the furan·sulfur dioxide complex [J]. Journal of Molecular Spectroscopy, 1992, 153(1-2): 497-510.

    [151] Obenchain D A, Spada L, Alessandrini S, et al. Unveiling the sulfur-sulfur bridge: Accurate structural and energetic characterization of a homochalcogen intermolecular bond [J]. Angewandte Chemie International Edition, 2018, 57(48): 15822-15826.

    [152] Mantina M, Chamberlin A C, Valero R, et al. Consistent van der Waals radii for the whole main group [J]. The Journal of Physical Chemistry A, 2009, 113(19): 5806-5812.

    [153] Huff A K, Ward R M, Leopold K R. Microwave spectrum and structure of the SO3-SO2 weakly bound complex [J]. Journal of Molecular Spectroscopy, 2020, 371: 111327.

    [154] Hunt S W, Leopold K R. Molecular and electronic structure of C5H5N-SO3: Correlation of ground state physical properties with orbital energy gaps in partially bound Lewis acid-base complexes [J]. The Journal of Physical Chemistry A, 2001, 105(22): 5498-5506.

    [155] Burns W A, Phillips J A, Canagaratna M, et al. Partially formed bonds In HCN-SO3 and CH3CN-SO3: A comparison between donor-acceptor complexes of SO3 and BF3 [J]. The Journal of Physical Chemistry A, 1999, 103(37): 7445-7453.

    [156] Sedo G, Leopold K R. Microwave spectrum of (CH3)3CCN-SO3 [J]. Journal of Molecular Spectroscopy, 2010, 262(2): 135-138.

    [157] Fiacco D L, Toro A, Leopold K R. Structure, bonding, and dipole moment of (CH3)3N-SO3. A microwave study [J]. Inorganic Chemistry, 2000, 39(1): 37-43.

    [158] Blanco S, Macario A, López J C. The structure of isolated thalidomide as reference for its chirality-dependent biological activity: A laser-ablation rotational study [J]. Physical Chemistry Chemical Physics, 2021, 23(24): 13705-13713.

    [159] Lee K L K, McCarthy M. Study of benzene fragmentation, isomerization, and growth using microwave spectroscopy [J]. The Journal of Physical Chemistry Letters, 2019, 10(10): 2408-2413.

    [160] Bloemink H I, Legon A C. The complex H3N…Br2 characterized in the gas phase by rotational spectroscopy [J]. The Journal of Chemical Physics, 1995, 103(3): 876-882.

    CHEN Junhua, WANG Hao, ZHENG Yang, CHENG Wanying, LI Weixing, XU Xuefang, GOU Qian. Rotational spectroscopic studies on intermolecular σ-hole and π-hole non-covalent interactions[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 751
    Download Citation