• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 6, 2030011 (2020)
Ziyun Zhuang and Ho Pui Ho*
Author Affiliations
  • Department of Biomedical Engineering The Chinese University of Hong Kong, N.T., Hong Kong, China
  • show less
    DOI: 10.1142/s1793545820300116 Cite this Article
    Ziyun Zhuang, Ho Pui Ho. Application of digital micromirror devices (DMD)[J]. Journal of Innovative Optical Health Sciences, 2020, 13(6): 2030011 Copy Citation Text show less
    References

    [1] L. Lin, E. Keeler, "Progress of MEMS scanning micromirrors for optical bio-imaging," Micromachines, 6, 1675–1689 (2015).

    [2] M. Archana, M. Manohar, G. Manimegalai, "Structural mechanical analysis of MEMS micromirror using COMSOL multiphysics," IOSR J. Electron. Commun. Eng. 9, 21–23 (2014).

    [3] O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. Peter, H. Zappe, "Optical MEMS: From micromirrors to complex systems," J. Microelectromech. Syst. 23, 517–538 (2014).

    [4] T. Yoon, C. Kim, K. Kim, J. Choi, "Emerging applications of digital micromirror devices in biophotonic fields," Opt. Laser Technol. 104, 17–25 (2018).

    [5] V. Bansal, P. Saggau, "Digital micromirror devices: Principles and applications in imaging," Cold Spring Harbor Protocols, 2013, 074302 (2013).

    [6] T. A. Bartlett, W. C. McDonald, J. N. Hall, "Adapting Texas instruments DLP technology to demonstrate a phase spatial light modulator," Proc. SPIE 10932, Emerging Digital Micromirror Device Based Systems and Applications XI 109320S (2019).

    [7] Y. Song, R. M. Panas, J. B. Hopkins, "A review of micromirror arrays," Precision Eng. 51, 729–761 (2018).

    [8] DMD Optical Efficiency for Visible Wavelengths (Rev. A), https://www.ti.com/lit/an/dlpa083a/ dlpa083a.pdf.

    [9] DLPr Display & Projection Chipset Selection Guide (Rev. B), https://www.ti.com/lit/sg/ sprt736b/sprt736b.pdf?ts=1592809817632.

    [10] S. M. Popo?, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, "Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media," Phys. Rev. Lett. 104, 100601 (2010).

    [11] A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, "Controlling waves in space and time for imaging and focusing in complex media," Nat. Photon. 6, 283–292 (2012).

    [12] B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, C. Yang, "Speckle-scale focusing in the diffusive regime with time reversal of varianceencoded light (TROVE)," Nat. Photon. 7, 300–305 (2013).

    [13] O. Katz, E. Small, Y. Guan, Y. Silberberg, "Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers," Optica, 1, 170 (2014).

    [14] S. Bianchi, R. Di Leonardo, "A multi-mode fiber probe for holographic micromanipulation and microscopy," Lab Chip 12, 635–639 (2012).

    [15] S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, T. ?i?mar, "Exploiting digital micromirror device for holographic microendoscopy," 10932, 109320-10 (2019).

    [16] T. Ci?mar, K. Dholakia, Exploiting multimode waveguides for pure fibre-based imaging, Nat. Commun. 3, 1027 (2012).

    [17] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, "High-speed scattering medium characterization with application to focusing light through turbid media," Opt. Exp. 20, 1733–1740 (2012).

    [18] L. Gao, J. Liang, C. Li, L. V. Wang, "Single-shot compressed ultrafast photography at one hundred billion frames per second," Nature 516, 74–77 (2014).

    [19] D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, W. Zhao, "DMD-based LED-illumination Super-resolution and optical sectioning microscopy," Sci. Rep. 3, 1116 (2013).

    [20] Q. Geng, C. Gu, J. Cheng, S. Chen, "Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging," Optica 4, 674 (2017).

    [21] S. Shin, K. Lee, Z. Yaqoob, P. T. C. So, Y. Park, "Reference-free polarization-sensitive quantitative phase imaging using singe-point optical phase conjugation," 26, 26858–36865 (2018).

    [22] K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, "Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications," Sensors (Basel, Switzerland) 13, 4170–4191 (2013).

    [23] E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data," Opt. Commun. 1, 153–156 (1969).

    [24] A. F. Fercher, H. Bartelt, H. Becker, E. Wiltschko, "Image formation by inversion of scattered field data: Experiments and computational simulation," Appl. Opt. 18, 2427–2439 (1979).

    [25] M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge (1997).

    [26] Haeberle, K. Belkebir, H. Giovaninni, A. Sentenac, "Tomographic diffractive microscopy: Basics, techniques and perspectives," J. Mod. Opt. 57, 686–699 (2010).

    [27] M. Debailleul, B. Simon, V. Georges, O. Haeberle, V. Lauer, "Holographic microscopy and diffractive microtomography of transparent samples," Meas. Sci. Technol. 19, 074009 (2008).

    [28] J. Bailleul, B. Simon, M. Debailleul, O. Haeberle, An introduction to tomographic diffractive microscopy, Micro- and Nanophotonic Technologies, pp. 425–442, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2017).

    [29] V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microscopy 205, 165–176 (2002).

    [30] B. Simon, M. Debailleul, V. Georges, V. Lauer, O. Haeberle, "Tomographic diffractive microscopy of transparent samples," Eur. Phys. J. Appl. Phys. 44, 29–35 (2008).

    [31] S. Shin, K. Kim, T. Kim, J. Yoon, K. Hong, J. Park, Y. Park, "Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells," Proc. SPIE 9718, Quantitative Phase Imaging II, 971814 (2016).

    [32] S. Shin, K. Kim, J. Yoon, Y. Park, "Active illumination using a digital micromirror device for quantitative phase imaging," Opt. Lett. 40, 5407– 5410 (2015).

    [33] K. Lee, K. Kim, G. Kim, S. Shin, Y. Park, "Timemultiplexed structured illumination using a DMD for optical diffraction tomography," Opt. Lett. 42, 999–1002 (2017).

    [34] D. Wang, Y. Meng, D. Chen, Y. Yam, S.C. Chen, "High-speed 3D imaging based on structured illumination and electrically tunable lens," Chinese Optics Letters 15, 12–15 (2017).

    [35] A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, H. Shro?, "Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy," Nat. Meth. 9, 749–754 (2012).

    [36] J. Cheng, C. Gu, D. Zhang, S. Chen, "High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device," Optics Lett. 40, 4875–4878 (2015).

    [37] D. Xu, T. Jiang, A. Li, B. Hu, Z. Feng, H. Gong, S. Zeng, Q. Luo, "Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device," J. Biomed. Opt. 18, 060503 (2013).

    [38] Y. Markaki, D. Smeets, S. Fiedler, V. J. Schmid, L. Schermelleh, T. Cremer, M. Cremer, "The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture," BioEssays 34, 412–426 (2012).

    [39] D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, W. Zhao, "DMD-based LED-illumination super-resolution and optical sectioning microscopy," Sci. Rep. 3, 1116 (2013).

    [40] J. Qian, S. Dang, Z. Wang, X. Zhou, D. Dan, B. Yao, Y. Tong, H. Yang, Y. Lu, Y. Chen, X. Yang, M. Bai, M. Lei, "Large-scale 3D imaging of insects with natural color," Opt. Exp. 27, 4845– 4857 (2019).

    [41] J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, X. Yu, "Full-color structured illumination optical sectioning microscopy," Sci. Rep. 5, 14513 (2015).

    [42] J. Zheng, R. M. Pasternack, N. N. Boustany, "Optical scatter imaging with a digital micromirror device," Opt. Exp. 17, 20401–20414 (2009).

    [43] R. M. Pasternack, Z. Qian, J. Y. Zheng, D. N. Metaxas, E. White, N. N. Boustany, "Measurement of subcellular texture by optical Fourier filtering with a micromirror device," Opt. Lett. 33, 2209–2211 (2008).

    [44] G. A. Dunn, D. Zicha, "Dynamics of fibroblast spreading," J. Cell Sci. 108, 1239–1249 (1995).

    [45] K. Nugent, T. Gureyev, D. Cookson, D. Paganin, Z. Barnea, "Quantitative phase imaging using hard X rays," Phys. Rev. Lett. 77, 2961–2964 (1996).

    [46] P. Ferraro, A. Wax, Z. Zalevsky, "Coherent light microscopy: Imaging and quantitative phase analysis," Springer Series in Surface Sciences, Vol. 46, pp. 1–372 (Springer-Verlag Berlin Heidelberg, 2011).

    [47] G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill Professional, US (2011).

    [48] T. Ikeda, G. Popescu, R. R. Dasari, M. S. Feld, "Hilbert phase microscopy for investigating fast dynamics in transparent systems," Opt. Lett. 30, 1165 (2005).

    [49] G. Popescu, T. Ikeda, R. R. Dasari, M. S. Feld, "Diffraction phase microscopy for quantifying cell structure and dynamics," Opt. Lett. 31, 775 (2006).

    [50] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, G. Popescu, "Spatial light interference microscopy (SLIM)," Opt. Exp. 19, 1016–1026 (2011).

    [51] N. T. Shaked, "Quantitative phase microscopy of biological samples using a portable interferometer," Opt. Lett. 37, 2016 (2012).

    [52] J. A. Rodrigo, T. Alieva, "Illumination coherence engineering and quantitative phase imaging," Opt. Lett. 39, 5634–5637 (2014).

    [53] C. Zheng, R. Zhou, C. Kuang, G. Zhao, Z. Yaqoob, P. T. C. So, "Digital micromirror device-based common-path quantitative phase imaging," Opt. Lett. 42, 1448–1451 (2017).

    [54] R. Zhou, "DMD-based quantitative phase microscopy and optical diffraction tomography," Emerging Digital Micromirror Device Based Systems & Applications X 10546, 105460-8 (2018).

    [55] H. Gonzalez, L. Martínez-León, F. Soldevila, M. Araiza-Esquivel, J. Lancis, E. Tajahuerce, "High sampling rate single-pixel digital holography system employing a DMD and phase-encoded patterns," Opt. Exp. 26, 20342–20350 (2018).

    [56] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, "High-speed scattering medium characterization with application to focusing light through turbid media," Opt. Exp. 20, 1733–1740 (2012).

    [57] H. Yu, J. Park, Y. Park, S. Lee, K. Lee, J. Yoon, K. Kim, "Recent advances in wavefront shaping techniques for biomedical applications," Curr. Appl. Phys. 15, 632–641 (2015).

    [58] J. Peng, M. Yao, J. Cheng, Z. Zhang, S. Li, G. Zheng, J. Zhong, "Micro-tomography via singlepixel imaging," Opt. Exp. 26, 31094–31105 (2018).

    [59] M. Ho?mann, I. N. Papadopoulos, B. Judkewitz, "Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device," Opt. Lett. 43, 22–25 (2018).

    [60] E. P. Wagner, B. W. Smith, S. Madden, J. D. Winefordner, M. Mignardi, "Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulation," Appl/ Spectrosc. 49, 1715–1719 (1995).

    [61] O. G. Rehrauer, V. C. Dinh, B. R. Mankani, G. T. Buzzard, B. J. Lucier, D. Ben-Amotz, "Binary complementary filters for compressive Raman spectroscopy," Appl. Spectrosc. 72, 69–78 (2018).

    [62] K. J. Kearney, Z. Ninkov, "Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy," Proc. SPIE, 3292, 81–92 (1998).

    [63] F. Sinjab, Z. Liao, I. Notingher, "Applications of spatial light modulators in Raman spectroscopy," Appl. Spectroscopy 73, 727–746 (2019).

    [64] B. M. Davis, A. J. Hemphill, D. Cebeci Malta?,M.A. Zipper, P. Wang, D. Ben-Amotz, "Multivariate hyperspectral Raman imaging using compressive detection," Anal. Chem. 83, 5086–5092 (2011).

    [65] D. Cebeci, B. Mankani, D. Ben-Amotz, "Recent trends in compressive Raman spectroscopy using DMD-based binary detection," J. Imaging 5, 1 (2018).

    [66] C. Scotte, H. B. de Aguiar, D. Marguet, E. M. Green, P. Bouzy, S. Vergnole, C. P. Winlove, N. Stone, H. Rigneault, "Assessment of compressive Raman versus hyperspectral Raman for microcalci fication chemical imaging," Anal. Chem. 90, 7197–7203 (2018).

    [67] P. Refregier, C. Scotte, H. B. de Aguiar, H. Rigneault, F. Galland, "Precision of proportion estimation with binary compressed Raman spectrum," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 35, 125–134 (2018).

    [68] C. Scotte, H. B. de Aguiar, D. Marguet, E. M. Green, P. Bouzy, S. Vergnole, C. P. Winlove, N. Stone, H. Rigneault, "Assessment of compressive Raman versus hyperspectral Raman for microcalci fication chemical imaging," Anal. Chem. 90, 7197–7203 (2018).

    [69] W. M. Duncan, "Micro-mirror arrays for Raman spectroscopy," Proc. SPIE 8979, Emerging Digital Micromirror Device Based Systems and Applications VI 89790E (2014).

    [70] P. Berto, C. Scotte, F. Galland, H. Rigneault, H. B. de Aguiar, "Programmable single-pixel-based broadband stimulated Raman scattering," Opt. Lett. 42, 1696–1699 (2017).

    [71] R. D. Meyer, K. J. Kearney, Z. Ninkov, C. T. Cotton, P. Hammond, B. D. Statt, "RITMOS: A micromirror-based multi-object spectrometer," Proc. SPIE 5492, 200–219 (2004).

    [72] P. Bartczak, P. F?lt, N. Penttinen, P. Ylitepsa, L. Laaksonen, L. Lensu, M. Hauta-Kasari, H. Uusitalo, "Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging," Opt. Rev. 24, 105–116 (2017).

    [73] P. Bartczak, D. ?erāne, P. F?lt, P. Ylitepsa, E. Hietanen, N. Penttinen, L. Laaksonen, L. Lensu, M. Hauta-Kasari, H. Uusitalo, "Spectrally tunable light source based on a digital micromirror device for retinal image contrast enhancement," Lithuanian J. Phys. 35(9) 1120–1123 (2014).

    [74] M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, A. E. Elsner, "Non-mydriatic confocal retinal imaging using a digital light projector," Proc Spie Int Soc Opt Eng 8567, 93760E-1–10 (2015).

    [75] M. Damodaran, K. V. Vienola, B. Braaf, K. A. Vermeer, J. F. de Boer, "Digital micromirror device based ophthalmoscope with concentric circle scanning," Biomed. Opt. Exp. 8, 2766–2780 (2017).

    [76] K. V. Vienola, M. Damodaran, B. Braaf, K. A. Vermeer, J. F. de Boer, "Parallel line scanning ophthalmoscope for retinal imaging," Opt. Lett. 40, 5335–5338 (2015).

    [77] C. Martins, B. Vohnsen, "Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device," Ophthalmic Physiol. Opt. 38, 273–280 (2018).

    [78] B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, P. Artal, "Single pixel camera ophthalmoscope," Optica 3, 1056–1059 (2016).

    [79] K. V. Vienola, M. Damodaran, B. Braaf, K. A. Vermeer, J. F. de Boer, "In vivo retinal imaging for fixational eye motion detection using a highspeed digital micromirror device (DMD)-based ophthalmoscope," Biomed. Opt. Exp. 9, 591–602 (2018).

    [80] L. J. Hornbeck, "Digital light processing for highbrightness high-resolution applications," Proc. SPIE 3013, 27–40 (1997).

    [81] A. Carmichael Martins, B. Vohnsen, "Measuring ocular aberrations sequentially using a digital micromirror device," Micromachines 10, 117 (2019).

    [82] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London 18, 269–275 (1902).

    [83] B. Liedberg, C. Nylander, I. Lundstr€om, "Biosensing with surface plasmon resonance—how it all started," Biosens. Bioelectron. 10, i–ix (1995).

    [84] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift f€ur Physik A Hadrons Nuclei 216, 398–410 (1968).

    [85] B. Rothenh?usler, W. Knoll, "Surface-plasmon microscopy," Nature 332, 615–617 (1988).

    [86] A. V. Kabashin, P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemicalsensors," Opt. Commun. 150, 5–8 (1998).

    [87] L. K. Wolf, D. E. Fullenkamp, R. M. Georgiadis, "Quantitative angle-resolved SPR imaging of DNADNA and DNADrug kinetics," J. Am. Chem. Soc. 127, 17453–17459 (2005).

    [88] E. Fu, S. Ramsey, R. Thariani, P. Yager, "Onedimensional surface plasmon resonance imaging system using wavelength interrogation," Rev. Sci. Instrum. 77, 07610-3 (2006).

    [89] D. Wang, F. Loo, H. Cong, W. Lin, S. K. Kong, Y. Yam, S. Chen, H. P. Ho, "Real-time multichannel SPR sensing based on DMD-enabled angular interrogation," Opt. Exp. 26, 24627–24636 (2018).

    [90] D. Wang, J. F. Chuen Loo, W. Lin, Q. Geng, E. K. Shan Ngan, S. K. Kong, Y. Yam, S. Chen, H. P. Ho, "Development of a sensitive DMD-based 2D SPR sensor array using single-point detection strategy for multiple aptamer screening," Sens. Actuat. B. Chem. 305, 127240 (2020).

    [91] A. Smolyaninov, A. El Amili, F. Vallini, S. Pappert, Y. Fainman, "Programmable plasmonic phase modulation of free-space wavefronts at gigahertz rates," Nat. Photon. 13, 431–435 (2019).

    [92] T. E. Brown, B. J. Carberry, B. T. Worrell, O. Y. Dudaryeva, M. K. McBride, C. N. Bowman, K. S. Anseth, "Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange," Biomater. 178, 496–503 (2018).

    [93] T. E. Brown, K. S. Anseth, "Spatiotemporal hydrogel biomaterials for regenerative medicine," Chem. Soc. Rev. 46, 6532–6552 (2017).

    [94] X. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C. S. E. Lai, F. Zanella, G.-S. Feng, F. Sheikh, S. Chien, S. Chen, "Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting," Proc. Natl. Acad. Sci. USA. 113, 2206–2211 (2016).

    [95] M. Gou, X. Qu, W. Zhu, M. Xiang, J. Yang, K. Zhang, Y. Wei, S. Chen, "Bio-inspired detoxi- fication using 3D-printed hydrogel nanocomposites," Nat. Commun. 5, 3774 (2014).

    [96] W. Yang, S. Cai, Z. Yuan, Y. Lai, H. Yu, Y. Wang, L. Liu, "Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening," Mater. Des. 183, 108182 (2019).

    [97] S. P. Grogan, P. H. Chung, P. Soman, P. Chen, S. Chen, M. K. Lotz, D. D. D'Lima, "Digital micromirror device projection printing system for meniscus tissue engineering," Acta Biomater. 9, 7218–7226 (2013).

    [98] G. M. Peretti, T. J. Gill, J. Xu, M. A. Randolph, K. R. Morse, D. J. Zaleske, "Cell-based therapy for meniscal repair," Am. J. Sports Med. 32, 146–158 (2004).

    [99] G. H. Sandmann, S. Eichhorn, S. Vogt, C. Adamczyk, S. Aryee, M. Hoberg, S. Milz, A. B. Imho?, T. Tischer, "Generation and characterization of a human acellular meniscus scaffold for tissue engineering," J. Biomed. Mater. Res. A 91A, 567–574 (2009).

    [100] S. Suri, L. Han, W. Zhang, A. Singh, S. Chen, C. Schmidt, "Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering," Biomed. Microdev. 13, 983–993 (2011).

    [101] T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, "A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering," Biomaterials 33, 6020–6041 (2012).

    [102] A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, S. He, "Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography," Adv. Mater. 24, 4266–4270 (2012).

    [103] Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J. Biomed. Mater. Res. A 77A, 396–405 (2006).

    [104] R. Gauvin, Y. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, A. Khademhosseini, "Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography," Biomaterials 33, 3824– 3834 (2012).

    [105] Z. Ge, H. Yu, W. Yang, L. Liu, Construction of microenvironment structures for the study of cell behavior using DMD-based optical projection lithography, 2018 IEEE 18th Int. Conf. Nanotechnology (IEEE-NANO), pp. 1–5 (2018).

    [106] C. Edwards, B. Bhaduri, T. Nguyen, B. G. Griffin, H. Pham, T. Kim, G. Popescu, L. L. Goddard, "Effects of spatial coherence in diffraction phase microscopy," Opt. Exp. 22, 5133–5146 (2014).

    [107] D. Cebeci-Malta?, R. McCann, P. Wang, R. Pinal, R. Roma?ach, D. Ben-Amotz, "Pharmaceutical application of fast Raman hyperspectral imaging with compressive detection strategy," J. Pharmaceutical Innov. 9, 1–4 (2014).

    [108] D. Cebeci Malta?, K. Kwok, P. Wang, L. S. Taylor, D. Ben-Amotz, "Rapid classification of pharmaceutical ingredients with Raman spectroscopy using compressive detection strategy with PLS-DA multivariate filters," J. Pharmaceutical Biomed. Anal. 80, 63–68 (2013).

    [109] S. Chowdhury, J. Izatt, "Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging," Biomed. Opt. Exp. 4, 1795–1805 (2013).

    [110] M. Cui, "A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media," Opt. Exp. 19, 2989–2995 (2011).

    Ziyun Zhuang, Ho Pui Ho. Application of digital micromirror devices (DMD)[J]. Journal of Innovative Optical Health Sciences, 2020, 13(6): 2030011
    Download Citation