• Photonics Research
  • Vol. 11, Issue 12, 2054 (2023)
Farbod Riahi1, Alexander Bußmann2, Carlos Doñate-Buendia1, Stefan Adami2、3, Nicolaus A. Adams2、3, Stephan Barcikowski4, and Bilal Gökce1、4、*
Author Affiliations
  • 1Chair of Materials Science and Additive Manufacturing, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, 42119 Wuppertal, Germany
  • 2Chair of Aerodynamics and Fluid Mechanics, School of Engineering and Design, Technical University of Munich, 85748 Garching bei München, Germany
  • 3Munich Institute of Integrated Materials, Energy, and Process Engineering (MEP), Technical University of Munich, 85748 Garching bei München, Germany
  • 4Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
  • show less
    DOI: 10.1364/PRJ.498204 Cite this Article Set citation alerts
    Farbod Riahi, Alexander Bußmann, Carlos Doñate-Buendia, Stefan Adami, Nicolaus A. Adams, Stephan Barcikowski, Bilal Gökce. Characterizing bubble interaction effects in synchronous-double-pulse laser ablation for enhanced nanoparticle synthesis[J]. Photonics Research, 2023, 11(12): 2054 Copy Citation Text show less
    References

    [1] J. Zhang, J. Claverie, M. Chaker, D. Ma. Colloidal metal nanoparticles prepared by laser ablation and their applications. ChemPhysChem, 18, 986-1006(2017).

    [2] V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, S. Barcikowski. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells, and doped oxide nanoparticles. Chem. Eur. J., 26, 9206-9242(2020).

    [3] A. I. Savchuk, A. Perrone, A. Lorusso, I. D. Stolyarchuk, O. A. Savchuk, O. A. Shporta. ZnMnO diluted magnetic semiconductor nanoparticles: synthesis by laser ablation in liquids, optical and magneto-optical properties. Appl. Surf. Sci., 302, 205-208(2014).

    [4] G. K. Yogesh, S. Shukla, D. Sastikumar, P. Koinkar. Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: a review. Appl. Phys. A, 127, 810(2021).

    [5] H. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai. Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater., 22, 1333-1353(2012).

    [6] D. Zhang, B. Gökce, S. Barcikowski. Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev., 117, 3990-4103(2017).

    [7] S. Peggiani, P. Marabotti, R. A. Lotti, A. Facibeni, P. Serafini, A. Milani, V. Russo, A. Li Bassi, C. S. Casari. Solvent-dependent termination, size and stability in polyynes synthesized via laser ablation in liquids. Phys. Chem. Chem. Phys., 22, 26312-26321(2020).

    [8] D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput, G. Ledoux, G. Breton, Y. Guillin, C. Dujardin, K. Masenelli-Varlot, P. Perriat. Synthesis of oxide nanoparticles by pulsed laser ablation in liquids containing a complexing molecule: impact on size distributions and prepared phases. J. Phys. Chem. C, 115, 5131-5139(2011).

    [9] A. Letzel, S. Reich, T. Dos Santos Rolo, A. Kanitz, J. Hoppius, A. Rack, M. P. Olbinado, A. Ostendorf, B. Gökce, A. Plech, S. Barcikowski. Time and mechanism of nanoparticle functionalization by macromolecular ligands during pulsed laser ablation in liquids. Langmuir, 35, 3038-3047(2019).

    [10] F. Davodi, E. Mühlhausen, D. Settipani, E. L. Rautama, A. P. Honkanen, S. Huotari, G. Marzun, P. Taskinen, T. Kallio. Comprehensive study to design advanced metal-carbide@garaphene and metal-carbide@iron oxide nanoparticles with tunable structure by the laser ablation in liquid. J. Colloid Interface Sci., 556, 180-192(2019).

    [11] F. Waag, W. I. M. A. Fares, Y. Li, C. Andronescu, B. Gökce, S. Barcikowski. Identification of the main mixing process in the synthesis of alloy nanoparticles by laser ablation of compacted micropowder mixtures. J. Mater. Sci., 57, 3041-3056(2022).

    [12] A. Tymoczko, M. Kamp, C. Rehbock, L. Kienle, E. Cattaruzza, S. Barcikowski, V. Amendola. One-step synthesis of Fe–Au core–shell magnetic-plasmonic nanoparticles driven by interface energy minimization. Nanoscale Horiz., 4, 1326-1332(2019).

    [13] J. Johny, M. Kamp, O. Prymak, A. Tymoczko, U. Wiedwald, C. Rehbock, U. Schürmann, R. Popescu, D. Gerthsen, L. Kienle, S. Shaji, S. Barcikowski. Formation of Co–Au core-shell nanoparticles with thin gold shells and soft magnetic ϵ-cobalt cores ruled by thermodynamics and kinetics. J. Phys. Chem. C, 125, 9534-9549(2021).

    [14] R. Streubel, G. Bendt, B. Gökce. Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids. Nanotechnology, 27, 205602(2016).

    [15] S. Jendrzej, B. Gökce, M. Epple, S. Barcikowski. How size determines the value of gold: economic aspects of wet chemical and laser-based metal colloid synthesis. ChemPhysChem, 18, 1012-1019(2017).

    [16] S. Dittrich, S. Kohsakowski, B. Wittek, C. Hengst, B. Gökce, S. Barcikowski, S. Reichenberger. Increasing the size-selectivity in laser-based g/h liquid flow synthesis of Pt and PtPd nanoparticles for CO and NO oxidation in industrial automotive exhaust gas treatment benchmarking. Nanomaterials, 10, 1582(2020).

    [17] C. Doñate-Buendía, M. Fernández-Alonso, J. Lancis, G. Mínguez-Vega. Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing. Photon. Res., 7, 1249-1257(2019).

    [18] R. Nadarajah, S. Barcikowski, B. Gökce. Picosecond laser-induced surface structures on alloys in liquids and their influence on nanoparticle productivity during laser ablation. Opt. Express, 28, 2909-2924(2020).

    [19] T. Löffler, F. Waag, B. Gökce, A. Ludwig, S. Barcikowski, W. Schuhmann. Comparing the activity of complex solid solution electrocatalysts using inflection points of voltammetric activity curves as activity descriptors. ACS Catal., 11, 1014-1023(2021).

    [20] C. Kinnear, T. L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev., 117, 11476-11521(2017).

    [21] C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, G. Mínguez-Vega. Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega, 3, 2735-2742(2018).

    [22] R. Riedel, N. Mahr, C. Yao, A. Wu, F. Yang, N. Hampp. Synthesis of gold-silica core-shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy. Nanoscale, 12, 3007-3018(2020).

    [23] C. Petridis, K. Savva, E. Kymakis, E. Stratakis. Laser generated nanoparticles based photovoltaics. J. Colloid Interface Sci., 489, 28-37(2017).

    [24] A. L. Bailly, F. Correard, A. Popov, G. Tselikov, F. Chaspoul, R. Appay, A. Al-Kattan, A. V. Kabashin, D. Braguer, M. A. Esteve. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep., 9, 12890(2019).

    [25] C. Doñate-Buendia, P. Kürnsteiner, F. Stern, M. B. Wilms, R. Streubel, I. M. Kusoglu, J. Tenkamp, E. Bruder, N. Pirch, S. Barcikowski, K. Durst, J. H. Schleifenbaum, F. Walther, B. Gault, B. Gökce. Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders. Acta Mater., 206, 116566(2021).

    [26] R. C. Forsythe, C. P. Cox, M. K. Wilsey, A. M. Müller. Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev., 121, 7568-7637(2021).

    [27] A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater., 8, 543-557(2009).

    [28] A. Letzel, B. Gökce, P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski. Size quenching during laser synthesis of colloids happens already in the vapor phase of the cavitation bubble. J. Phys. Chem. C, 121, 5356-5365(2017).

    [29] J. Tomko, S. M. O’Malley, C. Trout, J. J. Naddeo, R. Jimenez, J. C. Griepenburg, W. Soliman, D. M. Bubb. Cavitation bubble dynamics and nanoparticle size distributions in laser ablation in liquids. Colloids Surf. A, 522, 368-372(2017).

    [30] P. Wagener, G. Brandes, A. Schwenke, S. Barcikowski. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites. Phys. Chem. Chem. Phys., 13, 5120-5126(2011).

    [31] S. Petersen, S. Barcikowski. In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater., 19, 1167-1172(2009).

    [32] C. Rehbock, V. Merk, L. Gamrad, R. Streubel, S. Barcikowski. Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. Phys. Chem. Chem. Phys., 15, 3057-3067(2013).

    [33] A. Kanitz, M. R. Kalus, E. L. Gurevich, A. Ostendorf, S. Barcikowski, D. Amans. Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci. Technol., 28, 103001(2019).

    [34] A. Chemin, M. W. Fawaz, D. Amans. Investigation of the blast pressure following laser ablation at a solid–fluid interface using shock waves dynamics in air and in water. Appl. Surf. Sci., 574, 151592(2022).

    [35] M. Dell’Aglio, A. Santagata, G. Valenza, A. De Stradis, A. De Giacomo. Study of the effect of water pressure on plasma and cavitation bubble induced by pulsed laser ablation in liquid of silver and missed variations of observable nanoparticle features. ChemPhysChem, 18, 1165-1174(2017).

    [36] S. Reich, A. Letzel, A. Menzel, N. Kretzschmar, B. Gökce, S. Barcikowski, A. Plech. Early appearance of crystalline nanoparticles in pulsed laser ablation in liquids dynamics. Nanoscale, 11, 6962-6969(2019).

    [37] S. Barcikowski, A. Plech, K. S. Suslick, A. Vogel. Materials synthesis in a bubble. MRS Bull., 44, 382-391(2019).

    [38] P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski. Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble. J. Phys. Chem. C, 114, 7618-7625(2010).

    [39] S. Reich, P. Schönfeld, A. Letzel, S. Kohsakowski, M. Olbinado, B. Gökce, S. Barcikowski, A. Plech. Fluence threshold behaviour on ablation and bubble formation in pulsed laser ablation in liquids. ChemPhysChem, 18, 1084-1090(2017).

    [40] V. Amendola, M. Meneghetti. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?. Phys. Chem. Chem. Phys., 15, 3027-3046(2013).

    [41] K. Sasaki, T. Nakano, W. Soliman, N. Takada. Effect of pressurization on the dynamics of a cavitation bubble induced by liquid-phase laser ablation. Appl. Phys. Express, 2, 0465011(2009).

    [42] A. Menéndez-Manjón, B. N. Chichkov, S. Barcikowski. Influence of water temperature on the hydrodynamic diameter of gold nanoparticles from laser ablation. J. Phys. Chem. C, 114, 2499-2504(2010).

    [43] N. Takada, A. Fujikawa, K. Sasaki. Control of plasma and cavitation bubble in liquid-phase laser ablation using supersonic waves. Jpn. J. Appl. Phys., 50, 126201(2011).

    [44] N. Takada, A. Fujikawa, N. Koshizaki, K. Sasaki. Effect of ultrasonic wave on the syntheses of Au and ZnO nanoparticles by laser ablation in water. Appl. Phys. A, 110, 835-839(2013).

    [45] C. Kerse, H. Kalaycloⓖ, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşlk, B. Öktem, H. Hoogland, R. Holzwarth, F. Ö. Ilday. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84-88(2016).

    [46] M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, P. R. Levashov. Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett., 103, 195002(2009).

    [47] J. Schille, L. Schneider, S. Kraft, L. Hartwig, U. Loeschner. Experimental study on double-pulse laser ablation of steel upon multiple parallel-polarized ultrashort-pulse irradiations. Appl. Phys. A, 122, 644(2016).

    [48] C. D. Buendia, M. Spellauge, R. Streubel, F. Riahi, S. Barcikowski, H. P. Huber, B. Gökce. Double-pulse laser ablation in liquids: nanoparticle bimodality reduction by sub-nanosecond interpulse delay optimization. J. Phys. D, 56, 104001(2023).

    [49] M. Dell’Aglio, R. Gaudiuso, R. Elrashedy, O. De Pascale, G. Palazzo, A. De Giacomo. Collinear double pulse laser ablation in water for the production of silver nanoparticles. Phys. Chem. Chem. Phys., 15, 20868-20875(2013).

    [50] M. López-Claros, M. Dell’Aglio, R. Gaudiuso, A. Santagata, A. De Giacomo, F. J. Fortes, J. J. Laserna. Double pulse laser induced breakdown spectroscopy of a solid in water: effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra. Spectrochim. Acta B, 133, 63-71(2017).

    [51] K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, C. D. Ohl. Nonspherical laser-induced cavitation bubbles. Phys. Rev. E, 81, 016308(2010).

    [52] C. Chen, L. V. Zhigilei. Atomistic modeling of pulsed laser ablation in liquid: spatially and time-resolved maps of transient nonequilibrium states and channels of nanoparticle formation. Appl. Phys. A, 129, 288(2023).

    [53] M. Spellauge, C. Doñate-Buendía, S. Barcikowski, B. Gökce, H. P. Huber. Comparison of ultrashort pulse ablation of gold in air and water by time-resolved experiments. Light Sci. Appl., 11, 68(2022).

    [54] C. Y. Shih, M. V. Shugaev, C. Wu, L. V. Zhigilei. Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: molecular dynamics study. J. Phys. Chem. C, 121, 16549-16567(2017).

    [55] C. Y. Shih, M. V. Shugaev, C. Wu, L. V. Zhigilei. The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. Phys. Chem. Chem. Phys., 22, 7077-7099(2020).

    [56] C. Chen, L. V. Zhigilei. Ultrashort pulse laser ablation in liquids: probing the first nanoseconds of underwater phase explosion. Light Sci. Appl., 11, 111(2022).

    [57] C. Shih, R. Streubel, J. Heberle, A. Letzel, M. V. Shugaev, C. Wu, M. Schmidt, B. Gökce, S. Barcikowski, L. V. Zhigilei. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale, 10, 6900-6910(2018).

    [58] S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, S. Barcikowski. Nanoparticle formation in a cavitation bubble after pulsed laser ablation in liquid studied with high time resolution small angle X-ray scattering. Appl. Phys. Lett., 101, 103104(2012).

    [59] S. Kohsakowski, B. Gökce, R. Tanabe, P. Wagener, A. Plech, Y. Ito, S. Barcikowski. Target geometry and rigidity determines laser-induced cavitation bubble transport and nanoparticle productivity–a high-speed videography study. Phys. Chem. Chem. Phys., 18, 16585-16593(2016).

    [60] A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn. Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers. Ophthalmology, 93, 1259-1269(1986).

    [61] J. Long, M. Eliceiri, Z. Vangelatos, Y. Rho, L. Wang, Z. Su, X. Xie, Y. Zhang, C. P. Grigoropoulos. Early dynamics of cavitation bubbles generated during ns laser ablation of submerged targets. Opt. Express, 28, 14300-14309(2020).

    [62] A. Bußmann, F. Riahi, B. Gökce, S. Adami, S. Barcikowski, N. A. Adams. Investigation of cavitation bubble dynamics near a solid wall by high-resolution numerical simulation. Phys. Fluids, 35, 016115(2023).

    [63] F. Reuter, C. D. Ohl. Supersonic needle-jet generation with single cavitation bubbles. Appl. Phys. Lett., 118, 134103(2021).

    [64] B. Han, K. Köhler, K. Jungnickel, R. Mettin, W. Lauterborn, A. Vogel. Dynamics of laser-induced bubble pairs. J. Fluid Mech., 771, 706-742(2015).

    [65] P. Cui, Q. X. Wang, S. P. Wang, A. M. Zhang. Experimental study on interaction and coalescence of synchronized multiple bubbles. Phys. Fluids, 28, 012103(2016).

    [66] R. Chen, W. Liang, J. Zheng, X. Li, Y. Lin. Experimental study on the interaction of three linearly arranged spark bubbles with controlled phase differences. Phys. Fluids, 34, 037105(2022).

    [67] S. W. Fong, D. Adhikari, E. Klaseboer, B. C. Khoo. Interactions of multiple spark-generated bubbles with phase differences. Exp. Fluids, 46, 705-724(2009).

    [68] Y. Tomita, K. Sato. Pulsed jets driven by two interacting cavitation bubbles produced at different times. J. Fluid Mech., 819, 465-493(2017).

    [69] N. Bremond, M. Arora, S. M. Dammer, D. Lohse. Interaction of cavitation bubbles on a wall. Phys. Fluids, 18, 121505(2006).

    [70] R. Han, A. Zhang, Y. Liu. Numerical investigation on the dynamics of two bubbles. Ocean Eng., 110, 325-338(2015).

    [71] D. Fuster, C. Dopazo, G. Hauke. Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc. Am., 129, 122-131(2011).

    [72] R. Streubel, S. Barcikowski, B. Gökce. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt. Lett., 41, 1486-1489(2016).

    [73] T. Hupfeld, G. Laurens, S. Merabia, S. Barcikowski, B. Gökce, D. Amans. Dynamics of laser-induced cavitation bubbles at a solid–liquid interface in high viscosity and high capillary number regimes. J. Appl. Phys., 127, 044306(2020).

    [74] O. Le Métayer, R. Saurel. The Noble-Abel stiffened-gas equation of state. Phys. Fluids, 28, 046102(2016).

    [75] Y. Tomita, A. Shima. On the behavior of a spherical bubble and the impulse pressure in a viscous compressible liquid. Bull. JSME, 20, 1453-1460(1977).

    [76] K. M. Kim, J. H. Ryu. Synthesis of Y3Al5O12:Ce3+ colloidal nanocrystals by pulsed laser ablation and their luminescent properties. J. Alloys Compd., 576, 195-200(2013).

    [77] N. T. K. Thanh, N. Maclean, S. Mahiddine. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev., 114, 7610-7630(2014).

    [78] D. Zhang, J. Liu, C. H. Liang. Perspective on how laser-ablated particles grow in liquids. Sci. China Phys. Mech. Astron., 60, 074201(2017).

    [79] F. Reuter, Q. Zeng, C. D. Ohl. The Rayleigh prolongation factor at small bubble to wall stand-off distances. J. Fluid Mech., 944, A11(2022).

    [80] A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G. C. Messina, G. Compagnini, S. Barcikowski. Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys., 15, 3083-3092(2013).

    [81] M. Dell’Aglio, A. De Giacomo, S. Kohsakowski, S. Barcikowski, P. Wagener, A. Santagata. Pulsed laser ablation of wire-shaped target in a thin water jet: effects of plasma features and bubble dynamics on the PLAL process. J. Phys. D, 50, 185204(2017).

    [82] T. T. P. Nguyen, R. Tanabe-Yamagishi, Y. Ito. Impact of liquid layer thickness on the dynamics of nano- to sub-microsecond phenomena of nanosecond pulsed laser ablation in liquid. Appl. Surf. Sci., 470, 250-258(2019).

    [83] C. Lechner, W. Lauterborn, M. Koch, R. Mettin. Jet formation from bubbles near a solid boundary in a compressible liquid: numerical study of distance dependence. Phys. Rev. Fluids, 5, 093604(2020).

    [84] P. Cui, Q. X. Wang, S. P. Wang, A. M. Zhang. Experimental study on interaction and coalescence of synchronized multiple bubbles. Phys. Fluids, 28, 012103(2016).

    [85] P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski. Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys. Chem. Chem. Phys., 15, 3068-3074(2013).

    [86] S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, T. dos Santos Rolo, A. Plech. Pulsed laser ablation in liquids: impact of the bubble dynamics on particle formation. J. Colloid Interface Sci., 489, 106-113(2017).

    [87] F. Reuter, R. Mettin. Mechanisms of single bubble cleaning. Ultrason. Sonochem., 29, 550-562(2016).

    [88] J. Tomko, J. J. Naddeo, R. Jimenez, Y. Tan, M. Steiner, J. M. Fitz-Gerald, D. M. Bubb, S. M. O’Malley. Size and polydispersity trends found in gold nanoparticles synthesized by laser ablation in liquids. Phys. Chem. Chem. Phys., 17, 16327-16333(2015).

    [89] M. Dell’Aglio, A. de Giacomo. Plasma charging effect on the nanoparticles releasing from the cavitation bubble to the solution during nanosecond pulsed laser ablation in liquid. Appl. Surf. Sci., 515, 146031(2020).

    Farbod Riahi, Alexander Bußmann, Carlos Doñate-Buendia, Stefan Adami, Nicolaus A. Adams, Stephan Barcikowski, Bilal Gökce. Characterizing bubble interaction effects in synchronous-double-pulse laser ablation for enhanced nanoparticle synthesis[J]. Photonics Research, 2023, 11(12): 2054
    Download Citation