• Opto-Electronic Engineering
  • Vol. 52, Issue 1, 240250 (2025)
Yilun Hu1,2, Jun Yang2, Congyuan Xu2, Yajin Xia3, and Wenbin Deng2,*
Author Affiliations
  • 1College of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • 2College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • 3Haiyan ZhongDA METAL Electronic Material Co., LTD, Jiaxing, Zhejiang 314300, China
  • show less
    DOI: 10.12086/oee.2025.240250 Cite this Article
    Yilun Hu, Jun Yang, Congyuan Xu, Yajin Xia, Wenbin Deng. PIC2f-YOLO: a lightweight method for the detection of metal surface defects[J]. Opto-Electronic Engineering, 2025, 52(1): 240250 Copy Citation Text show less
    References

    [1] G Q Li. Analysis on the development status of bell-less top equipment maintenance for blast furnaces. Plant Maintenance Eng, 35-36(2019).

    [2] C Y Pan. Research on data compression method of massive magnetic flux leakage detection data of surface defects on steel plate based on improved SPIHT algorithm(2013).

    [3] C H Xu, G M Chen, J Xie. Application of infrared thermography technology in surface defects detection of products in metal. Manuf Autom Eng, 31, 51-54(2009).

    [4] X D Li, W J Mao, W Jiang. Image recognition for steel ball's surface quality detecting based on kernel extreme learning machine, 3727-3731(2015). https://doi.org/10.1109/ChiCC.2015.7260217

    [5] J L Lu, M X Lin, Y Huang et al. A high-accuracy algorithm for surface defect detection of steel based on DAG-SVM. Sens Transducers, 157, 412-418(2013).

    [6] Z B Zhang, G H Lv, G X Zhao et al. BS-YOLOv5s: insulator defect detection with attention mechanism and multi-scale fusion, 2365-2369(2023). https://doi.org/10.1109/ICIP49359.2023.10222163

    [7] K Y Ding, Z H Ding, Z B Zhang et al. SCD-YOLO: a novel object detection method for efficient road crack detection. Multimedia Syst, 30, 351(2024).

    [8] K J Zhu. Research on object detection based on deep learning. Mod Inf Technol, 8, 76-83(2024).

    [9] S Q Ren, K M He, R Girshick et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).

    [10] Q Liu, J S Lei. Surface defect detection of steel based on improved deep network. Comput Eng Design, 43, 2654-2661(2022).

    [11] X C Shi, S K Zhou, Y C Tai et al. An improved Faster R-CNN for steel surface defect detection, 1-5(2022). https://doi.org/10.1109/MMSP55362.2022.9949350

    [12] F F Jiang, N Li, C C Qiu et al. Defect detection method of wire mesh based on improved Faster RCNN. China Sciencepaper, 19, 153-159(2024).

    [13] Y T Ma, H D Zhao, C Yan et al. Strip steel surface defect detection method by improved YOLOv5 network. J Electron Meas Instrum, 36, 150-157(2022).

    [14] A Vaswani, N Shazeer, N Parmar et al. Attention is all you need, 6000-6010(2017).

    [15] X Li, C Wang, B Li et al. Steel surface defect detection algorithm based on Improved YOLOv 5. J Air Force Eng Univ, 23, 26-33(2022).

    [16] C Xiong, A N Yu, X H Gao et al. Steel surface defect detection algorithm based on improved YOLOX. Electron Meas Technol, 46, 151-157(2023).

    [17] L M Liang, P W Long, B H Lu et al. Improvement of GBS-YOLOv7t for steel surface defect detection. Opto-Electron Eng, 51, 240044(2024).

    [18] B C Yang, S X Li, Y Z Li et al. Improved YOLOv8n algorithm for steel surface defect detection. Mech Sci Technol Aerosp Eng, 1-10(2024). https://doi.org/10.13433/j.cnki.1003-8728.20240135

    [19] Ultralytics. YOLOv8: the latest version of YOLO object detection algorithm. GitHub(2023). https://github.com/ultralytics/ultralytics

    [20] J R Chen, S H Kao, H He et al. Run, don't walk: chasing higher FLOPS for faster neural networks, 12021-12031(2023). https://doi.org/10.1109/CVPR52729.2023.01157

    [21] J N Zhang, X T Li, J Li et al. Rethinking mobile block for efficient attention-based models, 1389-1400(2023). https://doi.org/10.1109/ICCV51070.2023.00134

    [22] Y Zhao, W Y Lv, S J Xu et al. DETRs beat YOLOs on real-time object detection, 16965-16974(2024). https://doi.org/10.1109/CVPR52733.2024.01605

    [23] C Y Wang, I H Yeh, H Y M Liao et al. YOLOv9: learning what you want to learn using programmable gradient information, 1-21(2024). https://doi.org/10.1007/978-3-031-72751-1_1

    [24] Y He, K C Song, Q G Meng et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans Instrum Meas, 69, 1493-1504(2020).

    [25] C Lion. Surface defect detection for aluminum sheets in iIndustrial applications. Baidu AI Studio(2022). https://aistudio.baidu.com/datasetdetail/135640

         C Lion. 铝片表面工业缺陷目标检测. Baidu AI Studio(2022). https://aistudio.baidu.com/datasetdetail/135640

    [26] M Everingham, S M A Eslami, Gool L Van et al. The PASCAL visual object classes challenge: a retrospective. Int J Comput Vision, 111, 98-136(2015).

    [27] Y L Hu. 带状合金功能材料表面缺陷数据集. Baidu AI Studio(2024). https://aistudio.baidu.com/datasetdetail/299785

         Y L Hu. Dataset of surface defects of strip alloy functional materials. Baidu AI Studio(2024). https://aistudio.baidu.com/datasetdetail/299785

    [28] Z H Yi, C H Jiang, X F Chen et al. Optimal configuration method for field angle of industrial cameras based on imaging area model. Control Theory Appl, 1-9(2023). http://kns.cnki.net/kcms/detail/44.1240.TP.20231214.0848.038.html

    [29] J X Shuai. The design and implementation of the digital system of a System-on-a-Chip CMOS image sensor(2009).

    [30] J Redmon, A Farhadi. YOLOv3: an incremental improvement(2018). https://arxiv.org/abs/1804.02767

    [31] C Y Li, L L Li, H L Jiag et al. YOLOv6: a single-stage object detection framework for industrial applications(2022). https://arxiv.org/abs/2209.02976

    [32] C Y Wang, A Bochkovskiy, H Y M Liao. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023). https://doi.org/10.1109/CVPR52729.2023.00721

    [33] Z Ge, S T Liu, F Wang et al. YOLOX: exceeding YOLO series in 2021(2021). https://arxiv.org/abs/2107.08430

    [34] A Wang, H Chen, L H Liu et al. YOLOv10: real-time end-to-end object detection(2024). https://arxiv.org/abs/2405.14458

    Yilun Hu, Jun Yang, Congyuan Xu, Yajin Xia, Wenbin Deng. PIC2f-YOLO: a lightweight method for the detection of metal surface defects[J]. Opto-Electronic Engineering, 2025, 52(1): 240250
    Download Citation