• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036006 (2023)
Nicolas Barré1、2、3, Ravi Shivaraman4, Simon Moser1, Patrick Salter4, Michael Schmidt2、3, Martin J. Booth3、4, and Alexander Jesacher1、3、*
Author Affiliations
  • 1Medical University of Innsbruck, Institute of Biomedical Physics, Innsbruck, Austria
  • 2Friedrich-Alexander-University Erlangen-Nürnberg, Institute of Photonic Technologies, Erlangen, Germany
  • 3Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen Graduate School in Advanced Optical Technologies, Erlangen, Germany
  • 4University of Oxford, Department of Engineering Science, Oxford, United Kingdom
  • show less
    DOI: 10.1117/1.APN.2.3.036006 Cite this Article Set citation alerts
    Nicolas Barré, Ravi Shivaraman, Simon Moser, Patrick Salter, Michael Schmidt, Martin J. Booth, Alexander Jesacher. Direct laser-written aperiodic photonic volume elements for complex light shaping with high efficiency: inverse design and fabrication[J]. Advanced Photonics Nexus, 2023, 2(3): 036006 Copy Citation Text show less
    References

    [1] T. D. Rossing, C. J. Chiaverina. Photonics—Light in the Twenty-First Century, 333-355(2019).

    [2] H. Rubinsztein-Dunlop et al. Roadmap on structured light. J. Opt., 19, 013001(2016).

    [3] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [4] M. Piccardo et al. Roadmap on multimode light shaping. J. Opt., 24, 013001(2021).

    [5] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [6] G. Li et al. Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photonics, 6, 413-487(2014).

    [7] P. J. Winzer, D. T. Neilson, A. R. Chraplyvy. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express, 26, 24190-24239(2018).

    [8] B. J. Puttnam, G. Rademacher, R. S. Luís. Space-division multiplexing for optical fiber communications. Optica, 8, 1186-1203(2021).

    [9] N. U. Dinc et al. Computer generated optical volume elements by additive manufacturing. Nanophotonics, 9, 4173-4181(2020).

    [10] X. Porte et al. Direct (3 + 1) d laser writing of graded-index optical elements. Optica, 8, 1281-1287(2021).

    [11] J. Moughames et al. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. Optica, 7, 640-646(2020).

    [12] Y. Luo et al. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight, 2, 1-16(2022).

    [13] K. Liao et al. All-optical computing based on convolutional neural networks. Opto-Electron. Adv., 4, 200060(2021).

    [14] P. Günter, J.-P. Huignard. Photorefractive Materials and Their Applications(2007).

    [15] H. J. Coufal, D. Psaltis, G. T. Sincerbox. Holographic Data Storage(2000).

    [16] Y. Wakayama et al. Mode demultiplexer using angularly multiplexed volume holograms. Opt. Express, 21, 12920-12933(2013).

    [17] T. D. Gerke, R. Piestun. Aperiodic volume optics. Nat. Photonics, 4, 188-193(2010).

    [18] G. Douglass et al. Two dimensional gradient-index beam shapers fabricated using ultrafast laser inscription. Opt. Express, 30, 40592-40598(2022).

    [19] N. Barré et al. Tomographic refractive index profiling of direct laser written waveguides. Opt. Express, 29, 35414-35425(2021).

    [20] U. G. Būtaitė et al. How to build the optical inverse of a multimode fibre(2022).

    [21] L. G. Wright et al. Nonlinear multimode photonics: nonlinear optics with many degrees of freedom. Optica, 9, 824-841(2022).

    [22] O. Lib, Y. Bromberg. Quantum light in complex media and its applications. Nat. Phys., 18, 986-993(2022).

    [23] R. Berlich et al. Fabrication of computer-generated holograms using femtosecond laser direct writing. Opt. Lett., 41, 1752-1755(2016).

    [24] M. Feit, J. Fleck. Light propagation in graded-index optical fibers. Appl. Opt., 17, 3990-3998(1978).

    [25] A. Jesacher, M. J. Booth. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt. Express, 18, 21090-21099(2010).

    [26] N. K. Fontaine et al. Laguerre–Gaussian mode sorter. Nat. Commun., 10, 1-7(2019).

    [27] N. Barré, A. Jesacher. Inverse design of gradient-index volume multimode converters. Opt. Express, 30, 10573-10587(2022).

    [28] W. Colburn, K. Haines. Volume hologram formation in photopolymer materials. Appl. Opt., 10, 1636-1641(1971).

    [29] J. Jialing et al. A review of photopolymers on holography volume data storage. Opto-Electron. Eng., 46, 180552(2019).

    [30] L. Hesselink et al. Photorefractive materials for nonvolatile volume holographic data storage. Science, 282, 1089-1094(1998).

    [31] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [32] B. Walther et al. Spatial and spectral light shaping with metamaterials. Adv. Mater., 24, 6300-6304(2012).

    [33] J. Scheuer. Metasurfaces-based holography and beam shaping: engineering the phase profile of light. Nanophotonics, 6, 137-152(2017).

    [34] A. H. Dorrah, F. Capasso. Tunable structured light with flat optics. Science, 376, eabi6860(2022).

    [35] J. Jang et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms. Adv. Opt. Mater., 9, 2100678(2021).

    [36] J. Oh et al. Adjoint-optimized metasurfaces for compact mode-division multiplexing. ACS Photonics, 9, 929-937(2022).

    [37] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [38] S. Y. Siew et al. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [39] P. Trinh et al. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity. IEEE Photonics Technol. Lett., 9, 940-942(1997).

    [40] A. Y. Piggott et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [41] C. Li, D. Liu, D. Dai. Multimode silicon photonics. Nanophotonics, 8, 227-247(2019).

    [42] P. Minzioni et al. Roadmap for optofluidics. J. Opt., 19, 093003(2017).

    [43] L. Carroll et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci., 6, 426(2016).

    [44] S. J. B. Yoo, B. Guan, R. P. Scott. Heterogeneous 2D/3D photonic integrated microsystems. Microsyst. Nanoeng., 2, 16030(2016).

    [45] J. H. Strickler, W. W. Webb. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett., 16, 1780-1782(1991).

    [46] E. Glezer et al. Three-dimensional optical storage inside transparent materials: errata. Opt. Lett., 22, 422-422(1997).

    [47] J. Zhang et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett., 112, 033901(2014).

    [48] X. Xu et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature, 609, 496-501(2022).

    [49] G. Della Valle, R. Osellame, P. Laporta. Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A: Pure Appl. Opt., 11, 013001(2008).

    [50] N. Bisch et al. Adaptive optics aberration correction for deep direct laser written waveguides in the heating regime. Appl. Phys. A, 125, 364(2019).

    [51] J. R. Fienup. Phase-retrieval algorithms for a complicated optical system. Appl. Opt., 32, 1737-1746(1993).

    Nicolas Barré, Ravi Shivaraman, Simon Moser, Patrick Salter, Michael Schmidt, Martin J. Booth, Alexander Jesacher. Direct laser-written aperiodic photonic volume elements for complex light shaping with high efficiency: inverse design and fabrication[J]. Advanced Photonics Nexus, 2023, 2(3): 036006
    Download Citation