• Chinese Journal of Lasers
  • Vol. 47, Issue 2, 207031 (2020)
Zhang Shuochen and Feng Jihong*
Author Affiliations
  • College of Life Science and Bioengineering, Beijing University of Technology, Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Beijing 100024, China
  • show less
    DOI: 10.3788/CJL202047.0207031 Cite this Article Set citation alerts
    Zhang Shuochen, Feng Jihong. Method for Generating Parallelized Fluorescence Depletion Patterns Based on Optical Wedges[J]. Chinese Journal of Lasers, 2020, 47(2): 207031 Copy Citation Text show less
    References

    [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [2] Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 24, 954-956(1999).

    [3] Bingen P, Reuss M, Engelhardt J et al. Parallelized STED fluorescence nanoscopy[J]. Optics Express, 19, 23716-23726(2011).

    [4] Huang B, Babcock H, Zhuang X W. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 143, 1047-1058(2010).

    [5] Jin L J, He Y, Qu L X et al. Analysis of new super-resolution microscopy technology[J]. Laser & Optoelectronics Progress, 55, 030006(2018).

    [6] Peng D M, Fu Z F, Xu P Y. Fluorescent proteins and super-resolution microscopy[J]. Acta Optica Sinica, 37, 0318008(2017).

    [7] Xu Y W, Zhang Y H, Yang H M et al. Imaging technology of reduced photobleaching based on controllable light exposure-confocal microscopy[J]. Chinese Journal of Lasers, 45, 0407001(2018).

    [8] Li H, Xia X Y, Chen T A et al. Applications of two-photon excitation fluorescence lifetime imaging in tumor diagnosis[J]. Chinese Journal of Lasers, 45, 0207010(2018).

    [9] Chmyrov A, Keller J, Grotjohann T et al. Nanoscopy with more than 100, 000 ‘doughnuts’[J]. Nature Methods, 10, 737-740(2013).

    [10] Yang B, Przybilla F, Mestre M et al. Large parallelization of STED nanoscopy using optical lattices[J]. Optics Express, 22, 5581-5589(2014).

    [11] Keller J, Schönle A, Hell S W. Efficient fluorescence inhibition patterns for RESOLFT microscopy[J]. Optics Express, 15, 3361-3371(2007).

    [12] Bergermann F, Alber L. SahlS J, et al. 2000-fold parallelized dual-color STED fluorescence nanoscopy[J]. Optics Express, 23, 211-223(2015).

    [13] Yang B. FangC Y, Chang H C, et al. Polarization effects in lattice-STED microscopy[J]. Faraday Discussions, 184, 37-49(2015).

    [14] Cai L Z, Yang X L, Wang Y R. All fourteen Bravais lattices can be formed by interference of four noncoplanar beams[J]. Optics Letters, 27, 900-902(2002).

    [15] Yuan L, Wang G P, Huang X K. Arrangements of four beams for any Bravais lattice[J]. Optics Letters, 28, 1769-1771(2003).

    [16] Yang X L, Cai L Z, Wang Y R et al. Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices[J]. Optics Letters, 28, 453-455(2003).

    [17] Xiao Y, Zhang Y H, Shi Y Q et al. The study on optical lattice formed by four-beam interference[J]. Optik, 127, 10421-10427(2016).

    [18] Ji J R[M]. Higher optics course-basic electromagnetic theory of optics, 1-44(2007).

    [19] Liao Y B[M]. Polarization optics, 45-63(2003).

    [20] Liang Q Y[M]. Physical optics fifth edition, 48-117(2018).

    [21] Li X T, Cen Z F[M]. Geometrical optics, aberrations and optical design, 10-56(2014).

    [22] Zhang Y M[M]. Apply optics, 18-126(2008).

    [23] Laikin M[M]. Lens design, 143-144(2012).

    [24] Tian Q, Liao Y B, Sun L Q[M]. Engineering optics, 35-71(2006).

    [25] Smith W J[M]. Modern optical engineering, 98-124(2011).

    Zhang Shuochen, Feng Jihong. Method for Generating Parallelized Fluorescence Depletion Patterns Based on Optical Wedges[J]. Chinese Journal of Lasers, 2020, 47(2): 207031
    Download Citation