• Journal of Innovative Optical Health Sciences
  • Vol. 18, Issue 2, 2343003 (2025)
Jiahao Fan1, Nan Zeng1, Honghui He1,*, Chao He2,**..., Shaoxiong Liu3 and Hui Ma1|Show fewer author(s)
Author Affiliations
  • 1Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
  • 2Department of Engineering Science, University of Oxford, Oxford, UK
  • 3Shenzhen Sixth People’s Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, P. R. China
  • show less
    DOI: 10.1142/S1793545823430034 Cite this Article
    Jiahao Fan, Nan Zeng, Honghui He, Chao He, Shaoxiong Liu, Hui Ma. Generating bright-field images of stained tissue slices from Mueller matrix polarimetric images with CycleGAN using unpaired dataset[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2343003 Copy Citation Text show less
    References

    [1] C. He, H. He, J. Chang, B. Chen, H. Ma, M. J. Booth. Polarisation optics for biomedical and clinical applications: A review. Light: Sci. Appl., 10, 194(2021).

    [2] N. Ghosh, I. A. Vitkin. Tissue polarimetry: Concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011).

    [3] H. He, R. Liao, N. Zeng, P. Li, Z. Chen, X. Liu, H. Ma. Mueller matrix polarimetry — an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol., 37, 2534-2548(2018).

    [4] J. Qi, D. S. Elson. Mueller polarimetric imaging for surgical and diagnostic applications: A review. J. Biophotonics, 10, 950-982(2017).

    [5] J. C. Ramella-Roman, I. Saytashev, M. Piccini. A review of polarization-based imaging technologies for clinical and preclinical applications. J. Opt., 22, 123001(2020).

    [6] V. V. Tuchin. Polarized light interaction with tissues. J. Biomed. Opt., 21, 071114(2016).

    [7] C. He, J. Chang, P. S. Salter et al. Revealing complex optical phenomena through vectorial metrics. Adv. Photonics, 4, 026001(2022).

    [8] Y. Shen, R. Huang, H. He, S. Liu, Y. Dong, J. Wu, H. Ma. Comparative study of the influence of imaging resolution on linear retardance parameters derived from the mueller matrix. Biomed. Opt. Express, 12, 211-225(2021).

    [9] W. E. Baylis, J. Bonenfant, J. Derbyshire, J. Huschilt. Light polarization: A geometricalgebra approach. Am. J. Phys., 61, 534-545(1993).

    [10] H. Jerrard. Modern description of polarized light: Matrix methods. Opt. Laser Technol., 14, 309-319(1982).

    [11] D. Layden, N. Ghosh, I. A. Vitkin. Quantitative polarimetry for tissue characterization and diagnosis. Adv. Biophotonics: Tissue Opt. Sectioning, 5, 73-108(2013).

    [12] Y. Yao, J. Wan, F. Zhang, Y. Dong, L. Chen, H. Ma. Correlation of image textures of a polarization feature parameter and the microstructures of liver fibrosis tissues. J. Innov. Opt. Health Sci., 16, 2241004(2023).

    [13] E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, H. Ma. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt., 19, 076013(2014).

    [14] M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. Le Grand, G. Le Brun, B. Turlin, B. Le Jeune. Mueller matrix polarimetry for improved liver fibrosis diagnosis. Opt. Lett., 37, 1061-1063(2012).

    [15] C. He, J. Chang, Q. Hu et al. Complex vectorial optics through gradient index lens cascades. Nat. Commun., 10, 4264(2019).

    [16] I. Ahmad, M. Ahmad, K. Khan, S. Ashraf, S. Ahmad, M. Ikram. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt., 20, 056012(2015).

    [17] D. Ivanov, V. Dremin, E. Borisova, A. Bykov, T. Novikova, I. Meglinski, R. Ossikovski. Polarization and depolarization metrics as optical markers in support to histopathology of ex vivo colon tissue. Biomed. Opt. Express, 12, 4560-4572(2021).

    [18] T. Liu, M. Lu, B. Chen, Q. Zhong, J. Li, H. He, H. Mao, H. Ma. Distinguishing structural features between crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophotonics, 12, e201900151(2019).

    [19] T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, A. De Martino. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl. Phys. Lett., 102, 241103(2013).

    [20] A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J. L. Totobenazara, M. R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt., 18, 046014(2013).

    [21] A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. R. Antonelli. Polarimetric imaging of uterine cervix: A case study. Opt. Express, 21, 14120-14130(2013).

    [22] Y. Wang, H. He, J. Chang, N. Zeng, S. Liu, M. Li, H. Ma. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron, 79, 8-15(2015).

    [23] L. Deng, C. Chen, W. Yu, C. Shao, Z. Shen, Y. Wang, C. He, H. Li, Z. Liu, H. He. Influence of hematoxylin and eosin staining on linear birefringence measurement of fibrous tissue structures in polarization microscopy. J. Biomed. Opt., 28, 102909(2023).

    [24] B. Bai, X. Yang, Y. Li, Y. Zhang, N. Pillar, A. Ozcan. Deep learning-enabled virtual histological staining of biological samples. Light: Sci. Appl., 12, 57(2023).

    [25] Y. Rivenson, H. Wang, Z. Wei, K. de Haan, Y. Zhang, Y. Wu, H. Günaydın, J. E. Zuckerman, T. Chong, A. E. Sisk. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng., 3, 466-477(2019).

    [26] Y. Rivenson, T. Liu, Z. Wei, Y. Zhang, K. de Haan, A. Ozcan. Phasestain: The digital staining of label-free quantitative phase microscopy images using deep learning. Light: Sci. Appl., 8, 23(2019).

    [27] L. Si, N. Li, T. Huang, S. Du, Y. Dong, Y. Yao, H. Ma. Computational image translation from Mueller matrix polarimetry to bright-field microscopy. J. Biophotonics, 15, e202100242(2022).

    [28] D. B. Chenault, J. L. Pezzaniti, R. A. Chipman. Mueller matrix algorithms. Proc. SPIE, 1746, 231-246(1992).

    [29] J. Zhou, H. He, Z. Chen, Y. Wang, H. Ma. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging. J. Biomed. Opt., 23, 016007(2018).

    [30] T. Xuan, H. Zhai, H. He, C. He, S. Liu, H. Ma. Self-registration of constant-step rotating Mueller matrix polarimeters. Opt. Lett., 47, 5797-5800(2022).

    [31] L. E. Brouwer. Beweis der invarianz des n-dimensionalen gebiets. Math. Ann., 71, 305-313(1911).

    [32] R. Bro, A. K. Smilde. Principal component analysis. Anal. Methods, 6, 2812-2831(2014).

    [33] T. A. A. Tosta, P. R. de Faria, L. A. Neves, M. Z. Nascimento. Computational normalization of H&E-stained histological images: Progress, challenges and future potential. Artif. Intell. Med., 95, 118-132(2019).

    [34] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A. M. Schlitter, I. Esposito, N. Navab. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imag., 35, 1962-1971(2016).

    [35] J. Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2223-2232(2017).

    [36] H. Zhao, O. Gallo, I. Frosio, J. Kautz. Loss functions for neural networks for image processing.

    [37] S. Kolhar, J. Jagtap. Convolutional neural network based encoder-decoder architectures for semantic segmentation of plants. Ecol. Inform., 64, 101373(2021).

    [38] T. Tong, G. Li, X. Liu, Q. Gao. Image superresolution using dense skip connections, 4799-4807(2017).

    [39] Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens., 54, 6232-6251(2016).

    [40] S. Bock, M. Weiß. A proof of local convergence for the adam optimizer, 1-8(2019).

    [41] N. Shazeer, M. Stern. Adafactor: Adaptive learning rates with sublinear memory cost, 4596-4604(2018).

    [42] B. Eysenbach, R. R. Salakhutdinov, S. Levine. Search on the replay buffer: Bridging planning and reinforcement learning. Adv. Neural Inf. Process. Syst., 32, 15246-15257(2019).

    [43] E. Karami, S. Prasad, M. Shehata. Image matching using sift, surf, brief and orb: Performance comparison for distorted images.

    [44] Y. Biadgie, K.-A. Sohn. Feature detector using adaptive accelerated segment test, 1-4(2014).

    [45] M. Calonder, V. Lepetit, C. Strecha, P. Fua. Brief: Binary robust independent elementary features. Proceedings, Part IV 11, Crete, Greece, 778-792(2010).

    [46] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, M. K. Markey. Complex wavelet structural similarity: A new image similarity index. IEEE Trans. Image Process., 18, 2385-2401(2009).

    [47] J. Korhonen, J. You. Peak signal-to-noise ratio evisited: Is simple beautiful?, 37-38(2012).

    Jiahao Fan, Nan Zeng, Honghui He, Chao He, Shaoxiong Liu, Hui Ma. Generating bright-field images of stained tissue slices from Mueller matrix polarimetric images with CycleGAN using unpaired dataset[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2343003
    Download Citation