• Laser & Optoelectronics Progress
  • Vol. 55, Issue 2, 021409 (2018)
Zhiwei Huang1, Xingquan Zhang1、*, Bin Chen1, Jinyu Tong1, Guangwu Fang1, and Shiwei Duan1
Author Affiliations
  • 1 School of Management Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
  • 1 School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
  • show less
    DOI: 10.3788/LOP55.021409 Cite this Article Set citation alerts
    Zhiwei Huang, Xingquan Zhang, Bin Chen, Jinyu Tong, Guangwu Fang, Shiwei Duan. Distribution Characteristic of Residual Stress in Aluminum Target Irradiated Directly by High Power Laser[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021409 Copy Citation Text show less
    References

    [1] Singh G, Grandhi R V, Stargel D S. Modeling and parameters design of a laser shock peening process[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 12, 233-253(2011). http://www.tandfonline.com/doi/abs/10.1080/15502287.2010.542795

    [2] Zhang X Q, Li H, Huang Z L et al. Numerical simulation of residual stress induced in 7075 aluminum alloy by repeated high-power laser pulses[J]. Chinese Journal of Lasers, 42, 1203002(2015).

    [3] Li X C, Zhang Y K, Lu Y L et al. Research of corrosion resistance for AZ31 magnesium alloy by laser shock processing[J]. Chinese Journal of Lasers, 41, 0403002(2014).

    [4] Luo K Y, Lin T, Dai F Z. et al. Effects of overlapping rate on the uniformities of surface profile of LY2 Al alloy during massive laser shock peening impacts[J]. Surface & Coatings Technology, 266, 49-56(2015). http://www.sciencedirect.com/science/article/pii/S0257897215001401

    [5] Cellard C, Retraint D, Francois M et al. Laser shock peening of Ti-17 titanium alloy: Influence of process parameters[J]. Materials Science and Engineering A, 532, 362-372(2012). http://www.sciencedirect.com/science/article/pii/S0921509311012068

    [6] Zhang X Q, Zhang Y, Duan S W et al. Numerical simulation of dynamic response of round rod subjected to laser shocking[J]. Chinese Journal of Lasers, 42, 0903009(2015).

    [7] Zhang Q L, Wu T D, Qian Y et al. Study on high cycle fatigue properties and laser shock processing of AZ91D-T6 cast magnesium alloy[J]. Chinese Journal of Lasers, 41, 1003008(2014).

    [8] Chai Y, Ren J, He W F et al. Effect of laser shock processing on the fatigue property of K4030 alloy blade[J]. Laser & Optoelectronics Progress, 51, 011405(2014).

    [9] Zhang X Q, Li H, Yu X L et al. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J]. Materials & Design, 65, 425-431(2015). http://www.sciencedirect.com/science/article/pii/S0261306914006906

    [10] Jiao Y, He W F, Luo S H et al. Study of micro-scale laser shock processing without coating improving the high cycle fatigue performance of K24 simulated blade[J]. Chinese Journal of Lasers, 42, 1003002(2015).

    [11] Gill A S, Telang A, Vasudeyan V K. Characteristics of surface layers formed on inconel 718 by laser shock peening with and without a protective coating[J]. Journal of Materials Processing Technology, 225, 463-472(2015). http://www.sciencedirect.com/science/article/pii/S0924013615300364

    [12] Sano Y, Masaki K, Gushi T. et al. Improvement in fatigue performance of friction stir welded A6061-T6 aluminum alloy by laser peening without coating[J]. Materials & Design, 36, 809-814(2012). http://www.sciencedirect.com/science/article/pii/S0261306911007552

    [13] Wang M[M]. Principle & technology of anti-fatigue manufacture, 186-196(1999).

    [14] Cao Y P, Feng A X, Xue W et al. Experimental research and theoretical study of laser shock wave induced dynamic strain on 2024 aluminum alloy surface[J]. Chinese Journal of Lasers, 41, 0903004(2014).

    [15] Zhang X Q, Chen L S, Li S Z. et al. Investigation of the fatigue life of pre- and post-drilling hole in dog-bone specimen subjected to laser shot peening[J]. Materials & Design, 88, 106-114(2015). http://www.sciencedirect.com/science/article/pii/S0264127515303865

    [16] Sathyajith S, Kalainathan S, Swaroop S. Laser peening without coating on aluminum alloy Al-6061-T6 using low energy Nd∶YAG laser[J]. Optics and Laser Technology, 45, 389-394(2013). http://www.sciencedirect.com/science/article/pii/S0030399212002873

    [17] Zhu Y H, Fu J, Zheng C. et al. Effect of laser shock peening without absorbent coating on the mechanical properties of Zr-based bulk metallic glass[J]. Optics and Laser Technology, 75, 157-163(2015).

    [18] Jiang Y F, Lai Y L, Zhang L et al. Investigation of residual stress hole on a metal surface by laser shock[J]. Chinese Journal of Lasers, 37, 2073-2079(2010).

    [19] Xue Y Q, Zhou X, Li Y H et al. Validation and restraint of "residual stress hole" produced by laser shock processing[J]. Laser & Optoelectronics Progress, 49, 121405(2012).

    [20] Ocaña J L, Morales M, Molpeceres C. et al. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments[J]. Applied Surface Science, 238, 242-248(2004). http://www.sciencedirect.com/science/article/pii/S0169433204008839

    [21] Qiao H C, Zhao Y X, Zhao J B et al. Effect of laser peening on microstructures and properties of TiAl alloy[J]. Optics and Precision Engineering, 22, 1766-1773(2014).

    [22] Zhu W H, Li Z Y, Zhou G Q et al. Effects of black paint on laser induced shock waves on surface of confined targets[J]. High Power Laser and Particle Beams, 9, 458-462(1997).

    [23] Ye Y X, Zhao S Y, Xiong S et al. Experimental study on the effect of the remaining absorbing layer on laser shock processing[J]. Infrared and Laser Engineering, 44, 3541-3547(2015).

    Zhiwei Huang, Xingquan Zhang, Bin Chen, Jinyu Tong, Guangwu Fang, Shiwei Duan. Distribution Characteristic of Residual Stress in Aluminum Target Irradiated Directly by High Power Laser[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021409
    Download Citation