• Chinese Journal of Quantum Electronics
  • Vol. 36, Issue 6, 727 (2019)
Feifei GAO*, Zhihui LI, and Duo HAN
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2019.06.014 Cite this Article
    GAO Feifei, LI Zhihui, HAN Duo. A new B92 protocol based on phase encoding[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 727 Copy Citation Text show less
    References

    [1] Brassard G, Lutkenhaus N, Mor T, et al. Limitations on practical quantum cryptography [J]. Physical Review Letters, 2000, 85(6): 1330-1333.

    [2] Sun S H, Liang L M. Experimental demonstration of an active phase randomization and monitor module for quantum key distribution [J]. Applied Physics Letters, 2012, 101(7): 071107.

    [4] Jiang M S, Sun S H, Li C Y, et al. Wavelength selected photon-number-splitting attack against “plug-and-play" quantum key distribution systems with decoy states [J]. Physical Review A, 2012, 8(3): 032310.

    [5] Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light [J]. Physical Review A, 2005, 72(1): 012322.

    [7] Hwang W Y. Quantum key distribution with high loss: Toward global secure communication [J]. Physical Review Letters, 2003, 91(5): 057901.

    [8] Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J]. Physical Review Letters, 2005, 94(23): 230504.

    [9] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Physical Review Letters, 2005, 94(23): 230503.

    [10] Hu J Z, Wang X B. Reexamination of the decoy-state quantum key distribution with an unstable source [J]. Physical Review A, 2010, 82(1): 012331.

    [11] Wang X B, Yang L, Peng C Z, et al. Decoy-state quantum key distribution with both source errors and statistical fluctuations [J]. New Journal of Physics, 2009, 11(7): 075006.

    [14] Inamori H, Lütkenhaus N, Mayers D. Unconditional security of practical quantum key distribution [J]. European Physical Journal D, 2007, 41(3): 599-627.

    [15] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters, 2012, 108(13): 130503.

    [16] Tamaki K, Lo H K, Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw [J]. Physical Review A, 2012, 85(4): 042307.

    [17] Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters [J]. Nature, 2018, 557: 400-403.

    [18] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE Press, 1984: 175-179.

    [19] Bennett C H. Quantum cryptography using any two nonorthogonal states [J]. Physical Review Letters, 1992, 68(21): 3121-3124.

    [20] Ma X F, Zeng P, Zhou H Y. Phase-matching quantum key distribution [J]. Physical Review X, 2018, 8(3): 031043.

    CLP Journals

    [1] HE Qiliang, DING Min, SONG Xiaoshu, XIAO Yongjun, LYU Bing. Non-classical correlations and quantum state transfer in nonlinear atom-cavity-fiber system with Kerr medium[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 382

    GAO Feifei, LI Zhihui, HAN Duo. A new B92 protocol based on phase encoding[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 727
    Download Citation