• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 399 (2021)
Jianfeng CAI1, Hongxiang WANG1、2, Guoqiang LIU1、2, and Jun JIANG1、2、*
Author Affiliations
  • 11. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 22. University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20200659 Cite this Article
    Jianfeng CAI, Hongxiang WANG, Guoqiang LIU, Jun JIANG. Designing High Entropy Structure in Thermoelectrics[J]. Journal of Inorganic Materials, 2021, 36(4): 399 Copy Citation Text show less
    References

    [1] P GEORGEE, D RAABE, O RITCHIER. High-entropy alloys. Nature Reviews Materials, 4, 515-534(2019).

    [2] B MIRACLED, N SENKOVO. A critical review of high entropy alloys and related concepts. Acta Mater., 122, 448-511(2017).

    [3] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloying with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6, 299-303(2004).

    [4] B GLUDOVATZ, A HOHENWARTER, D CATOOR et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345, 1153-1158(2014).

    [5] Z LI, G PRADEEPK, Y DENG et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534, 306-307(2016).

    [6] M YOUSSEF K, J ZADDACH A, C NIU et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3, 95-99(2014).

    [7] Y ZHANG, T ZUO T, Z TANG et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 61, 1-93(2014).

    [8] Z SHI Y, B YANG, P LIAW. Corrosion-resistant high-entropy alloys: a review. Metals-Basel, 7, 43-1(2017).

    [9] N SENKOV O, B WILKS G, B Miracle D et al. Refractory high-entropy alloys. Intermetallics, 18, 1758-1765(2010).

    [10] Y HSU C, C JUAN C, R WANG W et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high- entropy alloys. Materials Science and Engineering: A, 528, 3581-3588(2011).

    [11] K OIKAWA, W ITO, Y IMANO et al. Effect of magnetic field on martensitic transition of Ni46Mn41In13 heusler alloy. Appl. Phys. Lett., 88, 122507-1(2006).

    [12] Y ZHANG, T ZUO, Y CHENG et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep., 3, 1455-1(2013).

    [13] D BÉRARDAN, S FRANGER, D DRAGOE et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 10, 328-333(2016).

    [14] S SHAFEIE, S GUO, Q HU et al. High-entropy alloys as high- temperature thermoelectric materials. J. Appl. Phys., 118, 184905-1(2015).

    [15] C WEI P, N LIAO C, J WU H et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Adv. Mater., 32, 1906457-1(2020).

    [16] M H TSAI. Three strategies for the design of advanced high- entropy alloys. Entropy, 18, 252-1(2016).

    [17] H TSAI M, W YEH J. High-entropy alloys: a critical review. Materials Research Letters, 2, 107-123(2014).

    [18] E BELL L. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [19] J SNYDER G. Complex strucure thermoelectric meterial. Nat. Mater., 7, 105-114(2008).

    [20] R SOOTSMAN J, Y CHUNG D, G KANATZIDIS M. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 48, 8616-8639(2009).

    [21] H ZHANG, G LEE, F FONSECA A et al. Isotope effect on the thermal conductivity of graphene. Journal of Nanomaterials, 2010, 537657-1(2010).

    [22] R LIU, L XI, H LIU et al. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun., 48, 3818-3820(2012).

    [23] T PLIRDPRING, K KUROSAKI, A KOSUGA et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv. Mater., 24, 3622-3626(2012).

    [24] L XI, B ZHANGY, Y SHIX et al. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X=Se, S) from first principles. Phys. Rev. B, 86, 155201-155215(2012).

    [25] J SKOUGE, D CAINJ, T MORELLID. High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4solid solution. Appl. Phys. Lett., 98, 261911-1-3(2011).

    [26] R LIU, H CHEN, K ZHAO et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater., 29, 1702712-7-7(2017).

    [27] L HU, Y ZHANG, H WU et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy Mater., 8, 1802116-1-14(2018).

    [28] X LIN S, J TAN X, Z SHAO H et al. Ultralow lattice thermal conductivity in SnTe by manipulating the electron-phonon coupling. The Journal of Physical Chemistry C, 123, 15996-16002(2019).

    [29] G TAN, S HAO, R HANUS et al. High thermoelectric performance in SnTe-AgSbTe2 alloys from lattice softening, giant phonon-vacancy scattering, and valence band convergence. ACS. Energy Lett., 3, 705-712(2018).

    [30] W HARRISON. Elementary Electronic Structure. London: World Scientific Publishing Company(2004).

    Jianfeng CAI, Hongxiang WANG, Guoqiang LIU, Jun JIANG. Designing High Entropy Structure in Thermoelectrics[J]. Journal of Inorganic Materials, 2021, 36(4): 399
    Download Citation