• Ultrafast Science
  • Vol. 2, Issue 1, 9867028 (2022)
Yao Fu1, Jincheng Cao1, Kaoru Yamanouchi2,*, and Huailiang Xu1,3,*
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
  • 3CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China
  • show less
    DOI: 10.34133/2022/9867028 Cite this Article
    Yao Fu, Jincheng Cao, Kaoru Yamanouchi, Huailiang Xu. Air-Laser-Based Standoff Coherent Raman Spectrometer[J]. Ultrafast Science, 2022, 2(1): 9867028 Copy Citation Text show less
    References

    [1] C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Review of Scientific Instruments, vol. 75, no. 1, pp. 1–16, 2004

    [2] Z. Y. Yang, T. Albrow-Owen, W. W. Cai, and T. Hasan, “Miniaturization of optical spectrometers,” Science, vol. 371, no. 6528, article eabe0722, 2021

    [3] E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lerondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nature Photonics, vol. 1, no. 8, pp. 473–478, 2007

    [4] Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T. C. Wu, M. Zhuge, C. Williams, P. Wang, and A. V. Zayats, “Single-nanowire spectrometers,” Science, vol. 365, no. 6457, pp. 1017–1020, 2019

    [5] E. T. J. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annual Review of Physical Chemistry, vol. 56, no. 1, pp. 337–367, 2005

    [6] C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature, vol. 462, no. 7270, pp. 200–204, 2009

    [7] P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science, vol. 310, no. 5750, pp. 1006–1009, 2005

    [8] B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” The Journal of Chemical Physics, vol. 125, no. 4, p. 044502, 2006

    [9] H. U. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse,” The Journal of Chemical Physics, vol. 140, no. 2, p. 024316, 2014

    [10] C. H. Camp Jr., Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics, vol. 8, no. 8, pp. 627–634, 2014

    [11] D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science, vol. 316, no. 5822, pp. 265–268, 2007

    [12] Y. R. Shen The Principles of Nonlinear Optics, Wiley, New York, 1984

    [13] Q. Luo, W. Liu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Applied Physics B: Lasers and Optics, vol. 76, no. 3, pp. 337–340, 2003

    [14] A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science, vol. 331, no. 6016, pp. 442–445, 2011

    [15] J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Physical Review A, vol. 84, no. 5, article 051802, 2011

    [16] H. Li, D. Yao, S. Wang, Y. Fu, and H. Xu, “Air lasing: phenomena and mechanisms,” Chinese Physics B, vol. 28, no. 11, p. 114204, 2019

    [17] M. Richter, M. Lytova, F. Morales, S. Haessler, O. Smirnova, M. Spanner, and M. Ivanov, “Rotational quantum beat lasing without inversion,” Optica, vol. 7, no. 6, pp. 586–592, 2020

    [18] Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Physical Review Letters, vol. 115, no. 13, 2015

    [19] J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogenions in strong laser fields,” Physical Review Letters, vol. 116, no. 14, 2016

    [20] H. Xu, E. Lotstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nature Communications, vol. 6, no. 1, p. 8347, 2015

    [21] J. Ni, W. Chu, H. Zhang, B. Zeng, J. Yao, L. Qiao, G. Li, C. Jing, H. Xie, H. Xu, Y. Cheng, and Z. Xu, “Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament,” Optics Letters, vol. 39, no. 8, pp. 2250–2253, 2014

    [22] Z. Liu, J. Yao, H. Zhang, B. Xu, J. Chen, F. Zhang, Z. Zhang, Y. Wan, W. Chu, Z. Wang, and Y. Cheng, “Extremely nonlinear Raman interaction of an ultrashort nitrogen ion laser with an impulsively excited molecular wave packet,” Physical Review A, vol. 101, no. 4, 2020

    [23] X. Zhao, S. Nolte, and R. Ackermann, “Lasing of N2+ induced by filamentation in air as a probe for femtosecond coherent anti-Stokes Raman scattering,” Optics Letters, vol. 45, no. 13, pp. 3661–3664, 2020

    [24] F. Zhang, H. Xie, L. Yuan, Z. Zhang, B. Fu, S. Yu, G. Li, N. Zhang, X. Lu, J. Yao, Y. Cheng, and Z. Xu, “Background-free single-beam coherent Raman spectroscopy assisted by air lasing,” Optics Letters, vol. 47, no. 3, pp. 481–484, 2022

    [25] Z. Zhang, F. Zhang, B. Xu, H. Xie, B. Fu, X. Lu, N. Zhang, S. Yu, J. Yao, Y. Cheng, and Z. Xu, “High-sensitivity gas detection with air-lasing-assisted coherent Raman spectroscopy,” Ultrafast Science, vol. 2022, article 9761458, 2022

    [26] H. Li, M. Hou, H. Zang, Y. Fu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, and H. Xu, “Significant enhancement of N2+ lasing by polarization-modulated ultrashort laser pulses,” Physical Review Letters, vol. 122, no. 1, article 013202, 2019

    [27] H. Li, E. Lötstedt, H. Li, Y. Zhou, N. Dong, L. Deng, P. Lu, T. Ando, A. Iwasaki, Y. Fu, S. Wang, J. Wu, K. Yamanouchi, and H. Xu, “Giant enhancement of air lasing by complete population inversion in N2+,” Physical Review Letters, vol. 125, article 053201, no. 5, 2020

    [28] Y. Fu, J. Cao, S. Wang, S. Chen, H. Zang, H. Li, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, and H. Xu, “Extremely enhanced N2+lasing in a filamentary plasma grating in ambient air,” Optics Letters, vol. 46, no. 14, pp. 3404–3407, 2021

    [29] H. Zhang, C. Jing, J. Yao, G. Li, B. Zeng, W. Chu, J. Ni, H. Xie, H. Xu, S. L. Chin, K. Yamanouchi, Y. Cheng, and Z. Xu, “Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field,” Physical Review X, vol. 3, no. 4, 2013

    [30] J. H. Odhner, D. A. Romanov, and R. J. Levis, “Wave-packet dispersion during femtosecond laser filamentation in air,” Physical Review Letters, vol. 103, no. 7, 2009

    Yao Fu, Jincheng Cao, Kaoru Yamanouchi, Huailiang Xu. Air-Laser-Based Standoff Coherent Raman Spectrometer[J]. Ultrafast Science, 2022, 2(1): 9867028
    Download Citation