• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 5, 1450025 (2014)
Douglas J. Kelly1、2、3、*, Sean C. Warren1、2, Sunil Kumar1, Joao L. Lagarto1, Benjamin T. Dyer1、4, Anca Margineanu1, Eric W.-F. Lam3, Chris Dunsby1、5, and Paul M. W. French1
Author Affiliations
  • 1Photonics Group, Department of Physics, Imperial College London South Kensington Campus, London, SW7 2AZ, UK
  • 2Institute of Chemical Biology, Department of Chemistry Imperial College London, South Kensington Campus London, SW7 2AZ, UK
  • 3Department of Surgery and Cancer, Imperial College London Du Cane Road, London, W12 0NN, UK
  • 4National Heart & Lung Institute Imperial Centre for Experimental & Translational Medicine Du Cane Road, London, W12 0NN, UK
  • 5Centre for Histopathology, Imperial College London Du Cane Road, London, W12 0NN, UK
  • show less
    DOI: 10.1142/s1793545814500254 Cite this Article
    Douglas J. Kelly, Sean C. Warren, Sunil Kumar, Joao L. Lagarto, Benjamin T. Dyer, Anca Margineanu, Eric W.-F. Lam, Chris Dunsby, Paul M. W. French. An automated multiwell plate reading flim microscope for live cell autofluorescence lifetime assays[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1450025 Copy Citation Text show less
    References

    [1] H. E. Grecco, P. Roda-Navarro, A. Girod, J. Hou, T. Frahm, D. C. Truxius, R. Pepperkok, A. Squire, P. I. H. Bastiaens, "In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays," Nat. Methods 7, 467–472 (2010).

    [2] D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. C. Tullis, B. Vojnovic, T. Ng, S. M. Ameer-Beg, "A multi-functional imaging approach to high-content protein interaction screening," PLoS One 7, e33231 (2012).

    [3] D. Alibhai, D. J. Kelly, S. Warren, S. Kumar, A. Margineau, R. A. Serwa, E. Thinon, Y. Alexandrov, E. J. Murray, F. Stuhmeier, E. W. Tate, M. A. A. Neil, C. Dunsby, P. M. W. French, "Automated fluorescence lifetime imaging plate reader and its application to F€orster resonant energy transfer readout of Gag protein aggregation," J. Biophotonics 6, 398–408 (2013).

    [4] B. Chance, P. Cohen, F. Jobsis, B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499–508 (1962).

    [5] J. D. Shore, S. A. Evans, J. J. Holbrook, D. M. Parker, "NADH binding to porcine mitochondrial malate dehydrogenase," J. Biol. Chem. 254, 9059– 9062 (1979).

    [6] J. R. Lakowicz, "Principles of Fluorescence Spectroscopy," Springer, New York, (2006).

    [7] J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, "Fluorescence lifetime imaging of free and protein-bound NADH," Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).

    [8] N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, J. C. Pickup, "Glucose-dependent changes in NAD (P)H-related fluorescence lifetime of adipocytes and fibroblasts in vitro: Potential for non-invasive glucose sensing in diabetes mellitus," J. Photochem. Photobiol. B 80, 122–129 (2005).

    [9] H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, W. W. Webb, "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy," J. Biol. Chem. 280, 25119–25126 (2005).

    [10] A. Chorvatova, "Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAD (P)H fluorescence," J. Biomed. Opt. 17, 101505 (2012).

    [11] N. Mazumder, R. K. Lyn, R. Singaravelu, A. Ridsdale, D. J. Moffatt, C.-W. Hu, H.-R. Tsai, J. McLauchlan, A. Stolow, F.-J. Kao, J. P. Pezacki, "Fluorescence lifetime imaging of alterations to cellular metabolism by domain 2 of the hepatitis C virus core protein," PLoS One 8, e66738 (2013).

    [12] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, "In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia," Proc. Natl. Acad. Sci. USA 104, 19494–19499 (2007).

    [13] S. Sikder, J. M. G. Reyes, C. S. Moon, O. Suwan- Apichon, J. H. Elisseeff, R. S. Chuck, "Noninvasive mitochondrial imaging in live cell culture," Photochem. Photobiol. 81, 1569–1571 (2005).

    [14] K. K€onig, A. Uchugonova, E. Gorjup, "Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation," Microsc. Res. Tech. 74, 9–17 (2011).

    [15] H.-W. Guo, C.-T. Chen, Y.-H. Wei, O. K. Lee, V. Gukassyan, F.-J. Kao, H.-W. Wang, "Reduced nicotinamide adenine dinucleotide fluorescence lifetime separates human mesenchymal stem cells from differentiated progenies," J. Biomed. Opt. 13, 050505 (2011).

    [16] J. M. Squirrell, J. J. Fong, C. A. Ariza, A. Mael, K. Meyer, N. K. Shevde, A. Roopra, G. E. Lyons, T. J. Kamp, K. W. Eliceiri, B. M. Ogle, "Endogenous fluorescence signatures in living pluripotent stem cells change with loss of potency," PLoS One 7, e43708 (2012).

    [17] B. K. Wright, L. M. Andrews, J. Markham, M. R. Jones, C. Stringari, M. A. Digman, E. Gratton, "NADH distribution in live progenitor stem cells by phasor-fluorescence lifetime image microscopy," Biophys. J. 103, L7–L9 (2012).

    [18] A. Esposito, C. P. Dohm, M. Ba, F. S. Wouters, "Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening," Mol. Cell. Proteomics 6, 1446–1454 (2007).

    [19] C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, M. Katan, C. Dunsby, M. A. A. Neil, P. M. W. French, "High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis," J. Biophotonics 1, 514–521 (2008).

    [20] C. Allan, J.-M. Burel, J. Moore, C. Blackburn, M. Linkert, S. Loynton, D. Macdonald, W. J. Moore, C. Neves, A. Patterson, M. Porter, A. Tarkowska, B. Loranger, J. Avondo, I. Lagerstedt, L. Lianas, S. Leo et al., "OMERO: Flexible, model-driven data management for experimental biology," Nat. Methods 9, 245–253 (2012).

    [21] F. Ambriz-Colin, M. Torres-Cisneros, J. G. Avina- Cervantes, J. E. Saavedra-Martinez, O. Debeir, J. J. Sanchez-Mondragon, "Detection of biological cells in phase-contrast video microscopy," 2006 Multiconference Electron. Photonics, pp. 239–243, IEEE (2006), doi: 10.1109/MEP.2006.335672.

    [22] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, D. M. Sabatini, "CellProfiler: Image analysis software for identifying and quantifying cell phenotypes," Genome Biol. 7, R100 (2006).

    [23] A. W. Krause, W. W. Carley, W. W. Webb, "Fluorescent erythrosine B is preferable to trypan blue as a vital exclusion dye for mammalian cells in monolayer culture," J. Histochem. Cytochem. 32, 1084–1090 (1984).

    [24] S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, P. M. W. French, "Rapid global fitting of large fluorescence lifetime imaging microscopy datasets," PLoS One 8, e70687 (2013).

    [25] M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, B. Selinger, "Delta function convolution method (DFCM) for fluorescence decay experiments," Rev. Sci. Instrum. 56, 14 (1985).

    [26] N. Pokala, "dunnett.m" MATLAB Cent. File Exch. (2012), Available at .

    [27] T. G. Scott, R. D. Spencer, N. J. Leonard, G. Weber, "Synthetic spectroscopic models related to coenzymes and base pairs. V. Emission properties of NADH. Studies of fluorescence lifetimes and quantum effi- ciencies of NADH, AcPyADH, [reduced acetylpyridineadenine dinucleotide] and simplified synthetic models," J. Am. Chem. Soc. 92, 687–695 (1970).

    [28] T. P. Gonnella, J. M. Keating, J. A. Kjemhus, M. J. Picklo, J. P. Biggane, "Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1," Chem. Biol. Interact. 202, 85–90 (2013).

    [29] I. Georgakoudi, K. P. Quinn, "Optical imaging using endogenous contrast to assess metabolic state," Annu. Rev. Biomed. Eng. 14, 351–367 (2012).

    [30] H.-W. Wang, V. Gukassyan, C.-T. Chen, Y.-H. Wei, H.-W. Guo, J.-S. Yu, F.-J. Kao, "Differentiation of apoptosis from necrosis by dynamic changes of reduced nicotinamide adenine dinucleotide fluorescence lifetime in live cells," J. Biomed. Opt. 13, 054011 (2008).

    [31] A. J.Walsh,R.S.Cook, H. C.Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, M. C. Skala, "Optical metabolic imaging identifies glycolytic levels, sub-types and early treatment response in breast cancer," Cancer Res. 73, 6164–6174 (2013).

    [32] M. A. Digman, V. R. Caiolfa, M. Zamai, E. Gratton, "The Phasor approach to fluorescence lifetime imaging analysis," Biophys. J. 94, 14–16 (2008).

    [33] Q. Yu, A. A. Heikal, "Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level," J. Photochem. Photobiol. B 95, 46–57 (2009).

    [34] W. Zheng, D. Li, J. Y. Qu, "Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics," J. Biomed. Opt. 15, 037013 (2010).

    [35] Z. H. Siddik, "Cisplatin: Mode of cytotoxic action and molecular basis of resistance," Oncogene 22, 7265–7279 (2003).

    [36] W. M. Bonner, C. E. Redon, J. S. Dickey, A. J. Nakamura, O. A. Sedelnikova, S. Solier, Y. Pommier, "γ H2AX and cancer," 8, 957–967 (2008).

    [37] E. M. Saleh, R. A. El-Awady, N. Anis, N. El-Sharkawy, "Induction and repair of DNA double-strand breaks using constant-field gel electrophoresis and apoptosis as predictive markers for sensitivity of cancer cells to cisplatin," Biomed. Pharmacother. 66, 554–562 (2012).

    [38] H. Alborzinia, S. Can, P. Holenya, C. Scholl, E. Lederer, I. Kitanovic, S. W€olfl, "Real-time monitoring of cisplatin-induced cell death," PLoS One 6, e19714 (2011).

    [39] M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron- Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, N. Ramanujam, "In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia," J. Biomed. Opt. 12, 024014 (2007).

    [40] J.-S. Yu, H.-W. Guo, C.-H. Wang, Y.-H. Wei, H.-W. Wang, "Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells," J. Biomed. Opt. 16, 036008 (2011).

    [41] S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor et al., "FLIM FRET technology for drug discovery: Automated multiwell-plate high-content analysis, multiplexed readouts and application in situ," Chemphyschem 12, 609–626 (2011).

    [42] A. Bednarkiewicz, R. M. Rodrigues, M. P. Whelan, "Non-invasive monitoring of cytotoxicity based on kinetic changes of cellular autofluorescence," Toxicol. In Vitro 25, 2088–2094 (2011).

    [43] S. Levêque-Fort, M. P. Fontaine-Aupart, G. Roger, P. Georges, "Fluorescence-lifetime imaging with a multifocal two-photon microscope," Opt. Lett. 29, 2884–2886 (2004).

    [44] R. Benninger, O. Hofmann, J. McGinty, J. Requejo- Isidro, I. Munro, M. Neil, A. Demello, P. French, "Time-resolved fluorescence imaging of solvent interactions in microfluidic devices," Opt. Express 13, 6275–6285 (2005).

    [45] S. Kumar, C. Dunsby, P. A. A. De Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, P. M. W. French, "Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging," Opt. Express 15, 12548–12561 (2007).

    [46] U. Liebel, S. Winkler, F. Sieckmann, "Immersion objective, apparatus for forming an immersion film and method," (2012).

    Douglas J. Kelly, Sean C. Warren, Sunil Kumar, Joao L. Lagarto, Benjamin T. Dyer, Anca Margineanu, Eric W.-F. Lam, Chris Dunsby, Paul M. W. French. An automated multiwell plate reading flim microscope for live cell autofluorescence lifetime assays[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1450025
    Download Citation