• Laser & Optoelectronics Progress
  • Vol. 54, Issue 4, 41405 (2017)
Sun Hao1、*, Zhu Ying1, Guo Wei1, Peng Peng1, and Huang Shuai2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.041405 Cite this Article Set citation alerts
    Sun Hao, Zhu Ying, Guo Wei, Peng Peng, Huang Shuai. Effect of Laser Shock Peening on Residual Stress and Microstructure of TC17 Titanium Alloy[J]. Laser & Optoelectronics Progress, 2017, 54(4): 41405 Copy Citation Text show less
    References

    [1] Wang Xuede, Yang Lei, Zhou Xin, et al. Residual stress and microstructure of laser shock peened layer of titanium alloy[J]. Materials for Mechanical Engineering, 2012, 36(4): 77-83.

    [2] Li Chonghe, Zhu Ming, Wang Ning, et al. Application of titanium alloy in airplane[J]. Chinese Journal of Rare Metals, 2009, 33(1): 84-91.

    [3] Li H M, Liu Y G, Li M Q, et al. The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening[J]. Applied Surface Science, 2015, 357(A): 197-203.

    [4] Zhou L C, Li Y H, He W F, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering: A, 2013, 578: 181-186.

    [5] Cao X W, Xu H Y, Zou S K, et al. Investigation of surface integrity on TC17 titanium alloy treated by square-spot laser shock peening[J]. Chinese Journal of Aeronautics, 2012, 25(4): 650-656.

    [6] Fairand B P, Clauer A H. Laser generation of high-amplitude stress waves in materials[J]. Journal of Applied Physics, 1979, 50(3): 1497-1502.

    [7] Nie Xiangfan, He Weifeng, Zang Shunlai, et al. Effects on structure and mechanical properties of TC11 titanium alloy by laser shock peening[J]. Journal of Aerospace Power, 2014, 29(2): 321-327.

    [8] Hatamleh O, Lyons J, Forman R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007, 29(3): 421-434.

    [9] Breuer D. Laser peening-Advanced residual stress technology[J]. Industrial Heating, 2007, 74(1): 48-50.

    [10] Ricbard D T, David F L. Preventing fatigue failures with laser peening[J]. AMPTIAC Quarterly, 2003, 7(2): 3-7.

    [11] Bartsch T M. High cycle fatigue (HCF) science and technology program 2002 annual report[R]. Dayton: Universal Technology Corporation, 2003.

    [12] Zhang Hong, Yu Chengye, Lu Boliang. The research of laser shock processing to improve the mechanical properties of aeronautical materials[J]. Laser Journal, 1996, 17(5): 221-224.

    [13] Zou Hongcheng, Dai Shujuan, Yang Xiao, et al. Study on improvement of fatigue life of aluminum alloy by small energy laser shock processing[J]. Applied Laser, 1995, 15(6): 250-252.

    [14] Wang Huaming, Li Xiaoxuan, Sun Xijun, et al. Study of surface mechanical properties of laser shock processed austenitic steel and Ni-based super alloy[J]. Chinese J Lasers, 2000, 27(8): 756-760.

    [15] Zhang Yongkang, Zhou Lichun, Ren Xudong, et al. Experiment and finite element analysis on residual stress field in laser shock processing TC4 titanium alloy[J]. Journal of Jiangsu University, 2009, 30(1): 12-13.

    [16] Cao Yupeng, Xu Ying, Feng Aixin, et al. Experimental study of residual stress formation mechanism of 7050 aluminum alloy sheet by laser shock processing[J]. Chinese J Lasers, 2016, 43(7): 0702008.

    [17] Wang Changyu, Luo Kaiyu, Lu Jinzhong. Effect of advancing direction on residual stress fields of AM50 Mg alloy specimens treated by double-sided laser shock peening[J]. Chinese J Lasers, 2016, 43(3): 0303002.

    [18] Liu Bo, Luo Kaiyu, Wu Liujun, et al. Effect of laser shock processing on property and microstructure of AM50 magnesium alloy[J]. Acta Optica Sinica, 2016, 36(8): 0814003.

    [19] Lou S, Li Y, Zhou L, et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials & Design, 2016, 104: 320-326.

    [20] Li Wei. Study on principle and key technologies of laser shock processing used in steel blade[D]. Xi′an: Air Force Engineering University, 2010: 19-24.

    [21] Manson S S. Fatigue damage of metals[M]. Lu Suo, Transl. Beijing: National Defence Industry Press, 1976: 314-333.

    [22] Meyers M A, Gregori F, Kad B K, et al. Laser-induced shock compression of monocrystalline copper: Characterization and analysis[J]. Acta Materialia, 2003, 51(5): 1211-1228.

    [23] Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels[J]. ISIJ International, 2005, 45(11): 1736-1740.

    [24] Ling Chao, Li Guobin, Meng Xianling. An investigation on the relation between the fatigue crack propagation threshold and grain size-the application of the dislocation theory[J]. Journal of Hebei Institute of Technology, 1992, 21(3): 68-70.

    Sun Hao, Zhu Ying, Guo Wei, Peng Peng, Huang Shuai. Effect of Laser Shock Peening on Residual Stress and Microstructure of TC17 Titanium Alloy[J]. Laser & Optoelectronics Progress, 2017, 54(4): 41405
    Download Citation