• Journal of Inorganic Materials
  • Vol. 36, Issue 1, 25 (2021)
Tao DUAN1, Yi DING1, Shilin LUO2, Shengtai ZHANG3, and Jian LIU1
Author Affiliations
  • 1National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
  • 2Physics and Space Sciences College, China West Normal University, Nanchong 637002, China
  • 3School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China;
  • show less
    DOI: 10.15541/jim20200247 Cite this Article
    Tao DUAN, Yi DING, Shilin LUO, Shengtai ZHANG, Jian LIU. Radionuclides from Nature to Nature: Recent Progress in Immobilization of High Level Nuclear Wastes in SYNROC[J]. Journal of Inorganic Materials, 2021, 36(1): 25 Copy Citation Text show less
    References

    [1] P HATCH L. Ultimate disposal of radioactive wastes. Am. Sci., 41, 410-421(1953).

    [2] A RINGWOOD, S KESSON, N WARE et al. Immobilisation of high level nuclear reactor wastes in SYNROC. Nature, 278, 219-223(1979).

    [3] E SICKAFUS K, L MINERVINI, W GRIMES R et al. Radiation tolerance of complex oxides. Science, 289, 748-751(2000).

    [4] Z RAK, C EWING R, U BECKER. Ferric garnet matrices for immobilization of actinides. J. Nucl. Mater., 436, 1-7(2013).

    [5] R CLARKE D. Ceramic materials for the immobilization of nuclear waste. Annu. Rev. Mater. Sci., 13, 191-218(1983).

    [6] J ROBERT L E. Radioactive Waste Management. Annu. Rev. Part Sci., 40, 79-112(1990).

    [7] M MONTEL J. Minerals and design of new waste forms for conditioning nuclear waste. Cr. Geosci., 343, 230-236(2011).

    [8] C ZUR LOYE H, T BESMANN, J AMOROSO et al. Hierarchical materials as tailored nuclear waste forms: a perspective. Chem Mater., 30, 4475-4488(2018).

    [9] G MORRISON, D SMITH M, C ZUR LOYE H. Understanding the formation of salt-inclusion phases: an enhanced flux growth method for the targeted synthesis of salt-inclusion cesium halide uranyl silicates. J. Am. Chem. Soc., 138, 7121-7129(2016).

    [10] C BURNS P, C EWING R, A NAVROTSKY. Nuclear fuel in a reactor accident. Science, 335, 1184-1188(2012).

    [13] I ORLOVA A, I OJOVAN M. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 12, 2638(2019).

    [14] V PROUST, R JEANNIN, D WHITE F et al. Tailored perovskite waste forms for plutonium trapping. Inorg Chem., 58, 3026-3032(2019).

    [15] S FINKELDEI, C STENNETT M, M KOWALSKI P et al. Insights into the fabrication and structure of plutonium pyrochlores. J Mater. Chem. A, 8, 2387-2403(2020).

    [16] et alIncorporation of thorium in the zircon structure type through the Th1-xErx(SiO4)1-x, 55, 11273-11282(2016).

    [17] H LI Y, Q WANG Y, M ZHOU et al. Light ion irradiation effects on stuffed Lu2(Ti2. xLux)O7-x/2 (x=0, 0.4 and 0.67) structures Nucl. Instrum. Meth. B, 269, 2001-2005(2011).

    [18] Y YANG D, P XU C, G FU E et al. Structure. Structure and radiation effect of Er-stuffed pyrochlore Er2(Ti2-xErx)O7-x/2(x=0-0.667). Nucl. Instrum. Meth. B, 356-357, 69-74(2015).

    [20] M XU, Y WU, Y WEI. Stable solidification of silica-based ammonium molybdophosphate absorbing cesium using allophane: mechenical property and leaching studies. J. Radioanal. Nucl. Ch., 316, 1313-1321(2018).

    [21] Y WU, M XU, Y WEI et al. Stable solidification of silica-based ammonium molybdophosphate in ceramic matrices and its cesium- leaching properties. Chem Lett., 47, 179-182(2018).

    [22] Y DING, J LI Y, D JIANG Z et al. Phase evolution and chemical stability of the Nd2O3-ZrO2-SiO2 system synthesized by a novel hydrothermal-assisted Sol-Gel process. J Nucl. Mater., 510, 10-18(2018).

    [23] S LI, X YANG, J LIU et al. First-principles calculations and experiments for Ce 4+ effects on structure and chemical stabilities of Zr1-xCexSiO4. J. Nucl. Mater., 514, 276-283(2019).

    [24] X LU, X SHU, S CHEN et al. Heavy-ion irradiation effects on U3O8 incorporated Gd2Zr2O7 waste forms. J Hazard Mater., 357, 424-430(2018).

    [26] Y HUANG, H ZHANG, X ZHOU et al. Synthesis and microstructure of fluorapatite-type Ca10-2xSmxNax(PO4)6F2 solid solutions for immobilization of trivalent minor actinide. J Nucl. Mater., 485, 105-112(2017).

    [27] W YANG J, L TANG B, G LUO S. Immobilization of simulated actinides in pyrochlore-rich synroc. Journal of Nuclear & Radiochemistry, 22, 178-183(2000).

    [31] F ZHAO X, C TENG Y, H YANG et al. Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering. Ceram Int., 41, 11062-11068(2015).

    [32] H TU, T DUAN, Y DING et al. Preparation of zircon-matrix material for dealing with high-level radioactive waste with microwave. Mater Lett., 131, 171-173(2014).

    [33] V BARINOVA T, B PODBOLOTOV K, P BOROVINSKAYA I et al. Self-propagating high-temperature synthesis of ceramic matrices for immobilization of actinide-containing wastes. Radiochemistry, 56, 554-559(2014).

    [34] L WANG, Y SHUA X, C YIA F et al. Rapid fabrication and phase transition of Nd and Ce co-doped Gd2Zr2O7 ceramics by SPS. J Eur. Ceram. Soc., 38, 2863-2870(2018).

    [35] F LIU X, F NINA, A MARKUS. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev., 42, 8237-8265(2013).

    [36] D APURV, V ROBERT, G OLIVIER et al. Molten salt shielded synthesis of oxidation prone materials in air. Nat Mater., 18, 465-470(2019).

    [37] B LI Y, H SHAO, F LIN Z et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater.(2020).

    [38] M HU Z, X XIAO, Y JIN H et al. Rapid mass production of two-dimensional metal oxides and hydroxides. via the molten salts method. Nat Commun., 8, 15630-15638(2017).

    [39] J WU Y, Y HONG R, S WANG L et al. Molten-salt synthesis and characterization of Bi-substituted yttrium garnet nanoparticles. J Alloys Compd., 481, 96-99(2009).

    [40] R MATTHEW. GILBERT. Molten salt synthesis of titanate pyrochlore waste-forms. Ceram. Int., 42, 5263-5270(2016).

    [41] L HAND M, C STENNETT M, C HYATT N. Rapid low temperature synthesis of a titanate pyrochlore by molten salt mediated reaction. J. Euro. Ceram. Soc., 32, 3211-3219(2012).

    [42] M ADEL, S STEPHANIE, C NICOLAS et al. Coffinite, USiO4, is abundant in nature: so why is it so difficult to synthesize. Inorg Chem., 54, 6687-6696(2015).

    [43] J WEBER W. Self-radiation damage and recovery in Pu-doped zircon. Radiat. Eff. Defec. S, 115, 341-349(1991).

    [44] E BURAKOV B, B ANDERSON E, S ROVSHA V et al. Synthesis of Zircon for Immobilization of Actinides., 412, 33(1995).

    [45] S SZENKNECT, T COSTIN D, N CLAVIER et al. From uranothorites to coffinite: a solid solution route to the thermodynamic properties of USiO4. Inorg Chem., 52, 6957-6968(2013).

    [46] V PROUST, R JEANNIN, D WHITE F et al. Tailored perovskite waste forms for plutonium trapping. Inorg Chem., 58, 3026-3032(2019).

    [47] Y DING, H DAN, J LI J et al. Structure evolution and aqueous durability of the Nd2O3-CeO2-ZrO2-SiO2 system synthesized by hydrothermal-assisted Sol-Gel route: a potential route for preparing ceramics waste forms. J Nucl. Mater., 519, 217-228(2019).

    [48] C WANG, W PING, Q BAI et al. A general method to synthesize and sinter bulk ceramics in seconds. Science, 368, 521-526(2020).

    [49] F LU, T YAO, J XU et al. Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling. RSC Advances, 4, 38718(2014).

    [50] C CAO, S CHONG, L THIRION et al. Wet chemical synthesis of apatite-based waste forms-a novel room temperature method for the immobilization of radioactive iodine. J Mater. Chem. A, 5, 14331-14342(2017).

    [51] U HASSAN M, J RYU H. Cold sintering and durability of iodate- substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine. J. Nucl. Mater., 514, 84-89(2019).

    [52] H YANG J, S PARK H, H AHN D et al. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15. J Nucl. Mater., 480, 150-158(2016).

    [53] L MINERVINI, W GRIMES R, E SICKAFUS K et al. Disorder in pyrochlore oxides. J. Am. Ceram. Soc., 83, 1873-1878(2004).

    [54] J LIAN, B HELEAN K, J KENNEDY B et al. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J. Phys. Chem. B, 110, 2343-2350(2006).

    [55] H TU, T DUAN, Y DING, R LU X et al. Phase and micro- structural evolutions of the CeO2-ZrO2-SiO2 system synthesized by the sol-gel process. Ceram. Int., 6, 8046-8050(2015).

    [56] Y DING, G LONG X, M PENG S et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides. Ceram. Int., 487, 279-304(2015).

    [57] A CHAPMAN N. MCKINLEY. The geological disposal of nuclear waste. London: Wiley&Sons(1999).

    [58] D STRACHAN, R TURCOTTE, B BARNES. MCC-1: A standard leach test for nuclear waste forms. Nucl. Technol., 56, 306-312(1982).

    [59] M JANTZEN C, E BIBLER N, C BEAM D et al. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3. Technical Report, Westinghouse Savannah River Co., Aiken, SC(United States), 1994.

    [60] D SINGH, V MANDALIKA, S PARULEKAR et al. Magnesium potassium phosphate ceramic for 99Tc immobilization. J. Nucl. Mater., 348, 272-282(2006).

    [61] S GRIFFITH C, F SEBESTA, V HANNA J et al. Tungsten bronze- based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate-polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics. J. Nucl. Mater., 358, 151-163(2006).

    [62] L FAN, X SHU, X LU et al. Phase structure and aqueous stability of TRPO waste incorporation into Gd2Zr2O7 pyrochlore. Ceram. Int., 41, 11741-11747(2015).

    [63] Y LI S, J LIU, X YANG et al. Effect of phase evolution and acidity on the chemical stability of Zr1-xNdxSiO4-x/2 ceramics. Ceram. Int., 45, 3052-3058(2019).

    [64] V NIKOLAEVA E, E BURAKOV B. Investigation of Pu-doped ceramics using modified MCC-1 leach test. Mater. Res. Soc. Symp. Proc., 713, 429-432(2002).

    [65] J WEBER W, L WANG, J HESS N et al. Radiation effects in nuclear waste materials. OSTI Tech. Rep., 32, 453-454(1998).

    [66] H LI Y, Q WANG Y, A VALDEZJ et al. Swelling efects in Y2Ti2O7 pyrochlore irradiated with 400 keV Ne 2+ ions. Nucl. Instrum. Meth. B, 274, 182-187(2012).

    [67] H LI Y, Q WANG Y, P XU C et al. Microstructural evolution of the pyrochlore compound Er2Ti2O7 induced by light ion irradiations. Nucl. Instrum. Meth. B, 286, 218-222(2012).

    [68] E SICKAFUS K, W GRIMES R, A VALDEZJ et al. Radiation induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater., 6, 217-223(2007).

    [69] S UTSUNOMIYA, S YUDINTSEV, R EWING. Radiation effects in ferrate garnet. J. Nucl. Mater., 336, 251-260(2005).

    [70] Y DING, D JIANG Z, J LI Y et al. Effect of alpha-particles irradIation on the phase evolution and chemical stability of Nd-doped zircon ceramics. J. Alloys Compd., 729, 483-491(2017).

    [71] Y YANG X, A WANG S, Y LU et al. Structures and energetics of point defects with charge states in zircon: a first-principles study. J. Alloys Compd., 759, 60-69(2018).

    [72] J FINCH R, M HANCHAR J. Structure and chemistry of zircon and zircon-group minerals. Rev. Miner. Geochem., 53, 1-25(2003).

    [73] O GALUSKINA I, V GALUSKIN E, T ARMBRUSTER et al. Bitikleite-(SnAl) and bitikleite-, 95, 959-967(2010).

    Tao DUAN, Yi DING, Shilin LUO, Shengtai ZHANG, Jian LIU. Radionuclides from Nature to Nature: Recent Progress in Immobilization of High Level Nuclear Wastes in SYNROC[J]. Journal of Inorganic Materials, 2021, 36(1): 25
    Download Citation