• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1001003 (2022)
Xing Han1, Ling Han2、3、*, Liangzhi Li1, and Huihui Li1
Author Affiliations
  • 1School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, Shaanxi , China
  • 2School of Land Engineering, Chang’an University, Xi’an 710054, Shaanxi , China
  • 3Shaanxi Key Laboratory of Land Consolidation, Xi’an 710054, Shaanxi , China
  • show less
    DOI: 10.3788/LOP202259.1001003 Cite this Article Set citation alerts
    Xing Han, Ling Han, Liangzhi Li, Huihui Li. Building Change Detection in High-Resolution Remote-Sensing Images Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1001003 Copy Citation Text show less
    CBAM structure
    Fig. 1. CBAM structure
    PPM structure
    Fig. 2. PPM structure
    Proposed network structure
    Fig. 3. Proposed network structure
    Multiscale feature fusion
    Fig. 4. Multiscale feature fusion
    Comparison of detection results of building changes with different scales. (a) First-phase remote sensing image; (b) second-phase remote sensing image; (c) ground truth; (d) UNet; (e) ChangeNet; (f) CSCDNet; (g) proposed method
    Fig. 5. Comparison of detection results of building changes with different scales. (a) First-phase remote sensing image; (b) second-phase remote sensing image; (c) ground truth; (d) UNet; (e) ChangeNet; (f) CSCDNet; (g) proposed method
    ResNet50Size
    7×7, 64, stride2112×112
    3×3, max pooling, stride256×56
    1×13×364641×1256×3
    1×13×31281281×1514×428×28
    1×13×32562561×11024×614×14

    1×13×35125121×12048×3

    (dilated convolution)

    14×14
    Table 1. Network structure of feature extraction stage
    Lab environmentConfiguration
    CPU6×Intel(R)Xeon(R)CPU E5-2678 v3@2.50 GHz
    GPUNVIDIA GeForce RTX 2080 Ti
    Memory62 GB
    Operating systemUbuntu 18.04
    Deep learning frameworkPytorch1.6
    Programming languagePython 3.7
    GPU processing frameworkCUDA 10.0, CUDNN 7.6
    Table 2. Lab environment
    Initial learning rateMaximum number of iterationsF1/%
    0.150069.76
    0.0180.01
    0.00188.89
    0.000190.38
    0.0000188.17
    0.00015085.64
    10088.58
    20090.17
    50090.12
    Table 3. Hyperparameters’ optimization of neural network
    MethodPrecision /%Recall /%F1 /%
    Baseline80.36282.94681.273
    +CBAM81.26184.59482.884
    +PPM80.56783.33981.460
    Proposed method82.50885.23283.324
    Table 4. Ablation experiment
    MethodPrecision /%Recall /%F1 /%Time /h
    UNet72.50769.42170.8648.7
    ChangeNet74.65970.21572.3379.4
    CSCDNet80.29582.34781.36211.3

    method

    Proposed

    82.50885.23283.32410.1
    Table 5. Evaluation of change detection results of different methods
    Xing Han, Ling Han, Liangzhi Li, Huihui Li. Building Change Detection in High-Resolution Remote-Sensing Images Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1001003
    Download Citation