• Laser & Optoelectronics Progress
  • Vol. 48, Issue 5, 51901 (2011)
Wang Bingbing1、2、*, Huang Jingguo1、2, Lu Jinxing1、2, Huang Zhiming1, and Shen Xuemin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop48.051901 Cite this Article Set citation alerts
    Wang Bingbing, Huang Jingguo, Lu Jinxing, Huang Zhiming, Shen Xuemin. Terahertz Wave Sources Based on Difference Frequency Generation and Optical Parametric Processes[J]. Laser & Optoelectronics Progress, 2011, 48(5): 51901 Copy Citation Text show less
    References

    [1] Bradley Ferguson, Zhang Xicheng. Materials for terahertz science and technology[J]. Physics, 2003, 32(5): 286~293

    [2] Liu Shenggang. Recent development of terahertz science and technology[J]. China Basic Science, 2006, 8(1): 7~12

    [3] W. Shi, Y. J. Ding, Nils Fernelius et al.. Efficient, tunable, coherent 0.18-5.27-THz source based on GaSe crystal[J]. Opt. Lett., 2002, 27(16): 1454~1456

    [4] Y. J. Ding, W. Shi. Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: a novel approach[J]. Laser Physics, 2006, 16(4): 562~570

    [5] Zhang Dongwen. Research on Terahertz Time-domain Spectroscopy of GaSe and Difference Frequency Generation of Terahertz Radiation in GaSe[D]. Changsha:National University of Defense Technology, 2008. 93~105

    [6] Kodo Kawase, Jun-ichi Shikata, Hiromasa Ito. Terahertz wave parametric source[J]. J. Phys. D: Appl. Phys., 2002, 35(3): R1~R14

    [7] Koji Suizu, Kodo Kawase. Monochromatic-tunable terahertz-wave sources based on nonlinear frequency conversion using lithium niobate crystal[J]. IEEE J. Sel. Top. Quantum Electron., 2008, 14(2): 295~306

    [8] Lu Jingxing, Huang Jingguo, Huang Zhiming et al.. The analysis of the effect of phase-mismatch and material absorption on the terahertz-wave generation from GaSe[J]. Acta Physica Sinica, 2011, 60(2):024209

    [9] K. L. Vodopyanov, L.A. Kulevskii. New dispersion relationships for gase in the 0.65-18 Mu-M spectral region[J]. Opt. Commun., 1995, 118(3~4): 375~378

    [10] I. Shoji, T. Kondo, A. Kitamoto et al.. Absolute scale of second-order nonlinear-optical coefficients[J]. J. Opt. Soc. Amer. B, 1997, 14(9): 2268~2294

    [11] G. J. Edwards, M. Lawrence. A temperature-dependent dispersion equation for congruently grown lithium niobate[J]. Opt. Quantum Eleetron., 1984, 16(4): 373~375

    [12] Xia Caipeng. Theoretic and Experimental Studies of Terahertz Parametric Generator Based on MgOLiNbO3Crystal[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, 2009. 36~48

    CLP Journals

    [1] Zhang Yuping, Wu Zhixin, Shen Duanlong, Liu Meng, Yin Yiheng, Zhang Huiyun, Zhong Kai, Yao Jianquan. Theoretical Analysis of the Influence of Multi-Photon Absorptionon Terahertz Generation via ptical-Difference Frequency Generation[J]. Laser & Optoelectronics Progress, 2014, 51(3): 31901

    [2] Liu Lei, Li Xiao, Liu Tong, Xu Xiaojun, Jiang Zongfu. Progress of Terahertz Wave Parametric Oscillator[J]. Laser & Optoelectronics Progress, 2012, 49(9): 90001

    Wang Bingbing, Huang Jingguo, Lu Jinxing, Huang Zhiming, Shen Xuemin. Terahertz Wave Sources Based on Difference Frequency Generation and Optical Parametric Processes[J]. Laser & Optoelectronics Progress, 2011, 48(5): 51901
    Download Citation