• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 2, 2250010 (2022)
1, 2, 1, 2..., 2,3, 1, 2, 2, 2, 2,* and 1,2,4|Show fewer author(s)
Author Affiliations
  • 1Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, P. R. China
  • 2Department of Laser Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P. R. China
  • 3Medical School of Chinese PLA, Beijing 100853, P. R. China
  • 4Precision Laser Medical Diagnosis and Treatment Innovation Unit, Chinese Academy of Medical Sciences, Beijing 100000, P. R. China
  • show less
    DOI: 10.1142/s1793545822500109 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Comparative study on Photobiomodulation between 630 nm and 810 nm LED in diabetic wound healing both in vitro and in vivo[J]. Journal of Innovative Optical Health Sciences, 2022, 15(2): 2250010 Copy Citation Text show less
    References

    [1] P. Saeedi, I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, J. E. Shaw, D. Bright, R. Williams, I. D. F. D. A. Committee, "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas," Diabetes Res. Clin. Pract. 157, 107843 (2019).

    [2] P. Z. Zhang, J. Lu, Y. L. Jing, S. Y. Y. Tang, D. L. Zhu, Y. Bi, "Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis," Ann. Med. 49, 106–116 (2017).

    [3] A. J. Boulton, R. S. Kirsner, L. Vileikyte, "Clinical practice. Neuropathic diabetic foot ulcers," N. Engl. J. Med. 351, 48–55 (2004).

    [4] F. Liu, Y. Bao, R. Hu, X. Zhang, H. Li, D. Zhu, Y. Li, L. Yan, Y. Li, J. Lu, Q. Li, Z. Zhao, Q. Ji, W. Jia, "Screening and prevalence of peripheral neuropathy in type 2 diabetic outpatients: A randomized multicentre survey in 12 city hospitals of China," Diabetes Metab. Res. Rev. 26, 481–489 (2010).

    [5] A. J. Singer, R. A. Clark, "Cutaneous wound healing," N. Engl. J. Med. 341, 738–746 (2007).

    [6] S. Akita, "Wound repair and regeneration: Mechanisms, signaling," Int. J. Mol. Sci. 20, 6328 (2019).

    [7] H. Sorg, D. J. Tilkorn, S. Hager, J. Hauser, U. Mirastschijski, "Skin Wound Healing: An update on the current knowledge and concepts," Eur. Surg. Res. 58, 81–94 (2017).

    [8] H. Brem, M. Tomic-Canic, "Cellular and molecular basis of wound healing in diabetes," J. Clin. Invest. 117, 1219–1222 (2007).

    [9] E. V. Mikhalchik, D. I. Maximov, E. M. Ostrovsky, A. V. Yaskevich, Vlasova, II, T. V. Vakhrusheva, L. Y. Basyreva, A. A. Gusev, V. A. Kostevich, N. P. Gorbunov, A. V. Sokolov, O. M. Panasenko, S. A. Gusev ,"Neutrophils as a source of factors that increase the length of the inflammatory phase of wound healing in patients with type 2 diabetes mellitus," Biomed. Khim. 64, 433–438 (2018).

    [10] A. Mori, Y. Imanishi, T. Ito, K. Sakaoku, "Effect of thermal treatment on the structure and the biomedical properties of polyetherurethane film containing dipeptides of L-serine," Biomaterials 6, 325–337 (1985).

    [11] H. T. Whelan, R. L. Smits, Jr., E. V. Buchman, N. T. Whelan, S. G. Turner, D. A. Margolis, V. Cevenini, H. Stinson, R. Ignatius, T. Martin, J. Cwiklinski, A. F. Philippi, W. R. Graf, B. Hodgson, L. Gould, M. Kane, G. Chen, J. Caviness, "Effect of NASA light-emitting diode irradiation on wound healing," J. Clin. Laser Med. Surg. 19, 305–314 (2001).

    [12] H. Solmaz, Y. Ulgen, M. Gulsoy, "Photobiomodulation of wound healing via visible and infrared laser irradiation," Lasers Med. Sci. 32, 903–910 (2017).

    [13] A. Kaviani, G. E. Djavid, L. Ataie-Fashtami, M. Fateh, M. Ghodsi, M. Salami, N. Zand, N. Kashef, B. Larijani, "A randomized clinical trial on the effect of low-level laser therapy on chronic diabetic foot wound healing: A preliminary report," Photomed. Laser Surg. 29, 109–114 (2011).

    [14] I. Frangez, K. Cankar, H. Ban Frangez, D. M. Smrke, "The effect of LED on blood microcirculation during chronic wound healing in diabetic and non-diabetic patients-a prospective, double-blind randomized study," Lasers Med. Sci. 32, 887–894 (2017).

    [15] F. A. Al-Watban, B. L. Andres, "Polychromatic LED in oval full-thickness wound healing in nondiabetic and diabetic rats," Photomed. Laser Surg. 24, 10–16 (2006).

    [16] P. C. Silveira, K. B. Ferreira, F. R. da Rocha, B. L. Pieri, G. S. Pedroso, C. T. De Souza, R. T. Nesi, R. A. Pinho, "Effect of low-power laser (LPL) and light-emitting diode (LED) on inflammatory response in burn wound healing," Inflammation 39, 1395–1404 (2016).

    [17] D. Barolet, "Light-emitting diodes (LEDs) in dermatology," Semin. Cutan. Med. Surg. 27, 227–238 (2008).

    [18] D. Y. Li, Z. Zheng, T. T. Yu, B. Z. Tang, P. Fei, J. Qian, D. Zhu, "Visible-near infrared-II skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation," J. Biophoton. 13, e202000142 (2020).

    [19] R. Zein, W. Selting, M. R. Hamblin, "Review of light parameters and photobiomodulation e±cacy: Dive into complexity," J. Biomed. Opt. 23, 1–17 (2018).

    [20] D. P. Kuffler, "Photobiomodulation in promoting wound healing: A review," Regen. Med. 11, 107–122 (2016).

    [21] V. X. Farias, F. H. Macedo, M. B. Oquendo, A. R. Tome, S. N. Bao, D. O. Cintra, C. F. Santos, A. A. Albuquerque, D. B. Heimark, J. Larner, M. C. Fonteles, J. H. Leal-Cardoso, N. R. Nascimento, "Chronic treatment with D-chiro-inositol prevents autonomic and somatic neuropathy in STZ-induced diabetic mice," Diabetes Obes. Metab. 13, 243–250 (2011).

    [22] A. J. Nemeth, "Lasers and wound healing," Dermatol. Clin. 11, 783–789 (1993).

    [23] V. Heiskanen, M. R. Hamblin, "Photobiomodulation: Lasers vs. light emitting diodes?" Photochem. Photobiol. Sci. 17, 1003–1017 (2018).

    [24] A. P. de Sousa, G. M. Paraguassu, N. T. Silveira, J. de Souza, M. C. Cangussu, J. N. dos Santos, A. L. Pinheiro, "Laser and LED phototherapies on angiogenesis," Lasers Med. Sci. 28, 981–987 (2013).

    [25] T. I. Karu, S. F. Kolyakov, "Exact action spectra for cellular responses relevant to phototherapy," Photomed. Laser Surg. 23, 355–361 (2005).

    [26] P. S. Lau, N. Bidin, G. Krishnan, Z. Nassir, H. Bahktiar, "Biophotonic effect of diode laser irradiance on tensile strength of diabetic rats," J. Cosmet. Laser Ther. 17, 86–89 (2015).

    [27] B. Li, J. H. Wang, "Fibroblasts and myofibroblasts in wound healing: Force generation and measurement," J. Tissue Viability 20, 108–120 (2011).

    [28] T. Karu, "Primary and secondary mechanisms of action of visible to near-IR radiation on cells," J. Photochem. Photobiol. B. 49, 1–17 (1999).

    [29] M. R. Hamblin, "Photobiomodulation or low-level laser therapy," J. Biophoton. 9, 1122–1124 (2016).

    [30] L. F. de Freitas, M. R. Hamblin, "Proposed mechanisms of photobiomodulation or low-level light therapy," IEEE J. Sel. Top Quantum Electron 22, 7000417 (2016).

    [31] D. H. McDaniel, R. A. Weiss, R. G. Geronemus, C. Mazur, S. Wilson, M. A. Weiss, "Varying ratios of wavelengths in dual wavelength LED photomodulation alters gene expression profiles in human skin fibroblasts," Lasers Surg. Med. 42, 540–545 (2010).

    [32] Y. Y. Huang, A. C. Chen, J. D. Carroll, M. R. Hamblin, "Biphasic dose response in low level light therapy," Dose-Response 7, 358–383 (2009).

    [33] Y. Y. Huang, S. K. Sharma, J. Carroll, M. R. Hamblin, "Biphasic dose response in low level light therapy - An update," Dose-Response 9, 602–618 (2011).

    [34] L. Almeida-Lopes, J. Rigau, R. A. Zangaro, J. Guidugli-Neto, M. M. Jaeger, "Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence," Lasers Surg. Med. 29, 179–184 (2001).

    [35] T. I. Karu, N. I. Afanas'eva, "Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light," Doklady Akademii nauk 342, 693–695 (1995).

    [36] F. Antunes, A. Boveris, E. Cadenas, "On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide," Proc. Natl. Acad. Sci. USA 101, 16774–16779 (2004).

    [37] N. Turner, R. Grose, "Fibroblast growth factor signalling: From development to cancer," Nat. Rev. Cancer 10, 116–129 (2010).

    [38] B. Kwabi-Addo, M. Ozen, M. Ittmann, "The role of fibroblast growth factors and their receptors in prostate cancer," Endocr. Relat. Cancer 11, 709–724 (2004).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Comparative study on Photobiomodulation between 630 nm and 810 nm LED in diabetic wound healing both in vitro and in vivo[J]. Journal of Innovative Optical Health Sciences, 2022, 15(2): 2250010
    Download Citation