• High Power Laser Science and Engineering
  • Vol. 6, Issue 4, 04000e53 (2018)
Rao Li1、2、3, Youen Jiang1、2, Zhi Qiao1、2、3, Canhong Huang1、2、3, Wei Fan1、2, Xuechun Li1、2, and Zunqi Lin1、2
Author Affiliations
  • 1National Laboratory on High Power Laser and Physics , Shanghai 201800 , China
  • 2Key Laboratory of High Power Laser and Physics , Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China
  • 3University of Chinese Academy of Sciences , Beijing 100049 , China
  • show less
    DOI: 10.1017/hpl.2018.48 Cite this Article Set citation alerts
    Rao Li, Youen Jiang, Zhi Qiao, Canhong Huang, Wei Fan, Xuechun Li, Zunqi Lin. Suppression of amplitude modulation induced by polarization mode dispersion using a multi-degree-of-freedom fiber filter[J]. High Power Laser Science and Engineering, 2018, 6(4): 04000e53 Copy Citation Text show less

    Abstract

    Polarization mode dispersion (PMD) in fibers for high-power lasers can induce significant frequency modulation to amplitude modulation (FM-to-AM) conversion. However, existing techniques are not sufficiently flexible to achieve efficient compensation for such FM-to-AM conversion. By analyzing the nonuniform transmission spectrum caused by PMD, we found that the large-scale envelope of the transmission spectrum has more serious impacts on the amount of AM. In order to suppress the PMD-induced FM-to-AM conversion, we propose a novel tunable spectral filter with multiple degrees of freedom based on a half-wave plate, a nematic liquid crystal, and an axis-rotated polarization-maintaining fiber. Peak wavelength, free spectral range (FSR), and modulation depth of the filter are decoupled and can be controlled independently, which is verified through both simulations and experiments. The filter is utilized to compensate for the PMD-induced FM-to-AM conversion in the front end of a high-power laser facility. The results indicate that, for a pulse with phase-modulation frequency of 22.82 GHz, the FM-to-AM conversion could be reduced from 18% to 3.2% within a short time and maintained below 6.5% for 3 h. The proposed filter is also promising for other applications that require flexible spectral control such as high-speed channel selection in optical communication networks.
    $$\begin{eqnarray}M(f)=M_{\text{CON1}}M_{\text{PM}}M_{\text{CON0}},\end{eqnarray}$$ (1)
    (1)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle M_{\text{CON}i}=\left[\begin{array}{@{}cc@{}}\cos \unicode[STIX]{x1D703}_{\text{CON}i} & -\text{sin}\,\unicode[STIX]{x1D703}_{\text{CON}i}\\ \sin \unicode[STIX]{x1D703}_{\text{CON}i} & \cos \unicode[STIX]{x1D703}_{\text{CON}i}\end{array}\right],\quad i=0,1, & \displaystyle \nonumber\\ \displaystyle & \displaystyle M_{\text{PM}}=\left[\begin{array}{@{}cc@{}}1 & 0\\ 0 & e^{-i(2\unicode[STIX]{x1D70B}f\unicode[STIX]{x1D700}l+\unicode[STIX]{x1D711}_{\text{p}})}\end{array}\right], & \displaystyle \nonumber\end{eqnarray}$$ (1)
    (1)

    View in Article

    $$\begin{eqnarray}\left[\begin{array}{@{}c@{}}0\\ H_{\text{PM}}(f)\end{array}\right]=P\cdot M(f)\cdot \left[\begin{array}{@{}c@{}}0\\ 1\end{array}\right],\end{eqnarray}$$ (2)
    (2)

    View in Article

    $$\begin{eqnarray}H_{\text{PM}}\left(f\right)\propto 1+\frac{1}{\text{PER}_{\unicode[STIX]{x1D6FC}}}\exp \left[i\left(2\unicode[STIX]{x1D70B}f\unicode[STIX]{x0394}\unicode[STIX]{x1D70F}+\unicode[STIX]{x1D711}\right)\right],\end{eqnarray}$$ (3)
    (3)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D6FC}=\frac{P_{\max }-P_{\min }}{(P_{\max }+P_{\min })/2},\end{eqnarray}$$ (4)
    (4)

    View in Article

    $$\begin{eqnarray}\displaystyle M_{\text{filter}} & = & \displaystyle M_{\text{ILP}}\cdot M_{\text{PM2-R-PM1}}\cdot M_{\text{CON}}\cdot M_{\text{APM}}\cdot M_{\text{CON}}\nonumber\\ \displaystyle & & \displaystyle \cdot \,M_{\text{CPM}}\cdot M_{\text{LC}}\cdot M_{\unicode[STIX]{x1D706}/2}\cdot M_{\text{PZF}},\end{eqnarray}$$ (5)
    (5)

    View in Article

    $$\begin{eqnarray}\displaystyle H(f) & = & \displaystyle \sin \unicode[STIX]{x1D70C}\cdot \sin \unicode[STIX]{x1D703}_{\text{R}}-\unicode[STIX]{x1D702}\cdot \cos \unicode[STIX]{x1D70C}\cdot \cos \unicode[STIX]{x1D703}_{\text{R}}\nonumber\\ \displaystyle & & \displaystyle \cdot \,\exp \{-[i\unicode[STIX]{x1D711}_{\text{LC}}+i(2\unicode[STIX]{x1D70B}f\unicode[STIX]{x1D700}l_{\text{total}}+\unicode[STIX]{x1D711}_{\text{total}})]\}.\end{eqnarray}$$ (6)
    (6)

    View in Article

    $$\begin{eqnarray}\displaystyle |H(f)|^{2} & \propto & \displaystyle 1-\frac{2\tan \unicode[STIX]{x1D70C}\cdot \tan \unicode[STIX]{x1D703}_{\text{R}}}{\tan ^{2}\unicode[STIX]{x1D70C}\cdot \tan ^{2}\unicode[STIX]{x1D703}_{\text{R}}+1}\nonumber\\ \displaystyle & & \displaystyle \times \,\cos \{-[i\unicode[STIX]{x1D711}_{\text{LC}}+i(2\unicode[STIX]{x1D70B}f\unicode[STIX]{x1D700}l_{\text{total}}+\unicode[STIX]{x1D711}_{\text{total}})]\},\end{eqnarray}$$ (7)
    (7)

    View in Article

    Rao Li, Youen Jiang, Zhi Qiao, Canhong Huang, Wei Fan, Xuechun Li, Zunqi Lin. Suppression of amplitude modulation induced by polarization mode dispersion using a multi-degree-of-freedom fiber filter[J]. High Power Laser Science and Engineering, 2018, 6(4): 04000e53
    Download Citation